source: trunk/documents/UserDoc/UsersGuides/PhysicsReferenceManual/latex/electromagnetic/lowenergy/photoelectric.tex @ 1208

Last change on this file since 1208 was 1208, checked in by garnier, 15 years ago

CVS update

File size: 6.8 KB
Line 
1\section{Photoelectric effect}\label{secphoto}
2
3\subsection{Total cross-section}
4
5The total photoelectric cross-section at a given energy, E, is calculated as
6described in section~\ref{subsubsigmatot}. Note that for this process the
7{\it MeanFreePathTable} is not built, since the cross-section is not a 
8smooth function of the energy, therefore in all calculations the
9cross-section is used directly.
10
11\subsection{Sampling of the final state}
12
13The incident photon is absorbed and an electron is emitted.
14
15The electron kinetic energy is the difference between the incident photon
16energy and the binding energy of the electron before the interaction.
17The sub-shell, from which the electron is emitted, is randomly selected
18according to the relative cross-sections of all subshells,
19determined at the given energy, $T$, by interpolating the evaluated
20cross-section data from the EPDL97 data bank~\cite{pe-EPDL97}.
21
22The interaction leaves the atom in an excited state.
23The deexcitation of the atom is simulated as described in section~\ref{relax}.
24
25\subsection{Angular distribution of the emmited photoelectron}
26
27Three models are available to describe the direction of the emmited photoelectron:
28G4\-Photo\-Electric\-Angular\-Generator\-Simple, G4\-Photo\-Electric\-Angular\-Generator\-Sauter\-Gavrila and
29G4PhotoElectricAngularGeneratorPolarized.
30
31\subsubsection{G4PhotoElectricAngularGeneratorSimple}
32
33The default model assumes that the photoelectron direction is emmited in the same
34direction as the incident photon.
35
36\subsubsection{G4PhotoElectricAngularGeneratorSauterGavrila}
37
38This model implements the Sauter--Gavrilla distribution has
39presented in the Standard Photoelectric effect.
40
41\subsubsection{G4PhotoElectricAngularGeneratorPolarized}
42
43This model models the double differential cross section (for angles $\theta$ and $\phi$) and
44thus it is capable of account for polarization of the incident photon. The developed
45generator was based in the research of Sauter in 1931\cite{Sauter:1931}. The Sauter's formula was recalculated by Gavrila in
461959 for the K-shell~\cite{Gavrila:1959} and in 1961 for the L-shells~\cite{Gavrila:1961}. These new double differential formulas have some limitations, $\alpha$Z$<<$1 and have a range between 0.1$<\beta<$0.99 c. 
47
48\subsubsection*{K--shell}
49
50The double differential photoeffect for K--shell can be written as~\cite{Gavrila:1959}:
51\begin{equation}
52\frac{d\sigma}{d \omega}(\theta,\phi) = \frac{4}{m^2}{\alpha^6}{Z^5}\frac{\beta^3(1-\beta^2)^3}{\left[1-(1-\beta^2)^{1/2}\right]}
53\left(F\left(1-\frac{\pi\alpha Z}{\beta}\right)+ \pi\alpha Z G\right)
54\end{equation}
55where
56\begin{eqnarray*}
57F &=& \frac{\sin^2 \theta \cos^2 \phi}{(1-\beta \cos \theta)^4} - \frac{1-(1-\beta^2)^{1/2}}{2(1-\beta^2)}\frac{\sin^2\theta\cos^2\phi}{(1-\beta\cos\theta)^3} \nonumber \\ &+&\frac{\left[1-(1-\beta^2)^{1/2}\right]^2}{4(1-\beta^2)^{3/2}}\frac{\sin^2\theta}{(1-\beta\cos\theta)^3}
58\end{eqnarray*}
59\begin{eqnarray*}
60G &=& \frac{[1-(1-\beta^2)^{1/2}]^{1/2}}{2^{7/2} \beta^2 (1-\beta \cos \theta)^{5/2}}\left[\frac{4\beta^2}{(1-\beta^2)^{1/2}} \frac{\sin^2 \theta \cos^2 \phi}{1-\beta\cos\theta} + \frac{4\beta}{1-\beta^2}\cos \theta \cos^2 \phi - \right.{} \nonumber \\
61&-&\left.\frac{1-(1-\beta^2)^{1/2}}{1-\beta^2}(1-\cos^2\phi)-\beta^2\ \frac{1-(1-\beta^2)^{1/2}}{1-\beta^2} \frac{\sin^2 \theta}{1-\beta \cos \theta} - \right.{} \nonumber \\
62&+& \left.4\beta^2\frac{1-(1-\beta^2)^{1/2}}{(1-\beta^2)^{3/2}} - 4\beta \frac{\left[ 1-(1-\beta^2)^{1/2}\right]^2}{(1-\beta^2)^{3/2}}\right] \nonumber \\
63&+&\frac{1-(1-\beta^2)^{1/2}}{4\beta^2(1-\beta\cos\theta)^2}\left[\frac{\beta}{1-\beta^2}-\frac{2}{1-\beta^2}\cos\theta\cos^2\phi + \frac{1-(1-\beta^2)^{1/2}}{(1-\beta^2)^{3/2}}\cos\theta \right.{} \nonumber \\
64&-& \left.\beta \frac{1-(1-\beta^2)^{1/2}}{(1-\beta^2)^{3/2}}\right]
65\end{eqnarray*}
66where $\beta$ is the electron velocity, $\alpha$ is the fine--structure constant, $Z$ is the atomic number of the material and $\theta$, $\phi$ are the emission angles with respect to the electron initial direction.
67
68\subsubsection*{L1--shell}
69
70The double differential photoeffect distribution for L1--shell is the same as
71for K--shell despising a constant~\cite{Gavrila:1961}:
72\begin{equation}
73B = \xi \frac{1}{8}
74\end{equation}
75where $\xi$ is equal to 1 when working with unscreened Coulomb wave functions as it is done in this development.
76
77\subsubsection*{The generation of the photoelectron distribution}
78
79Since the polarized Gavrila cross--section is a 2--dimensional non--factorized distribution an acceptance--rejection technique was the adopted~\cite{Peralta:2003}. For the Gravrila distribution, two functions
80were defined $g_1(\phi)$ and $g_2(\theta)$:
81\begin{eqnarray}
82g_1(\phi) &=& a \\
83g_2(\theta) &=& \frac{\theta}{1+c\theta^2}
84\end{eqnarray}
85such that:
86\begin{equation}
87A g_1(\phi)g_2(\theta) \ge \frac{d^2 \sigma}{d\phi d\theta}
88\end{equation}
89where A is a global constant. The method used to calculate the distribution is
90the same as the one used in Low Energy 2BN Bremsstrahlung Generator, being the
91difference $g_1(\phi) = a$.
92
93\subsection{Status of the document}
94
95\noindent
9630.09.1999 created by Alessandra Forti\\
9707.02.2000 modified by V\'eronique Lef\'ebure\\
9808.03.2000 reviewed by Petteri Nieminen and Maria Grazia Pia\\
9913.05.2002 modified by Vladimir Ivanchenko
10001.05.2006 modified by Ana Farinha, Andreia Trindade, Lu\'{\i}s Peralta and Pedro Rodrigues\\
101
102\begin{latexonly}
103
104\begin{thebibliography}{99}
105\bibitem{pe-EPDL97} 
106  %http://reddog1.llnl.gov/homepage.red/photon.htm
107  ``EPDL97: the Evaluated Photon Data Library, '97 version",
108  D.Cullen, J.H.Hubbell, L.Kissel,
109  UCRL--50400, Vol.6, Rev.5
110\bibitem{Sauter:1931}
111``K--Shell Photoelectric Cross Sections from 200 keV to 2 MeV", R H Pratt, R D Levee,
112 R L Pexton and W Aron, Phys. Rev. 134 (1964) 4A
113\bibitem{Gavrila:1959}
114``Relativistic K--Shell Photoeffect", M. Gavrila, Phys. Rev. 113 (1959) 2
115\bibitem{Gavrila:1961}
116``Relativistic L--Shell Photoeffect", M. Gavrila, Phys. Rev. 124 (1961) 4
117\bibitem{Peralta:2003}
118``Monte Carlo Generation of 2BNBremsstrahlung Distribution", 
119  L. Peralta, P. Rodrigues, A. Trindade
120  CERN EXT--2004--039 (July, 2003)
121\end{thebibliography}
122
123\end{latexonly}
124
125\begin{htmlonly}
126
127\subsection{Bibliography}
128
129\begin{enumerate}
130\item 
131  %http://reddog1.llnl.gov/homepage.red/photon.htm
132  ``EPDL97: the Evaluated Photon Data Library, '97 version",
133  D.Cullen, J.H.Hubbell, L.Kissel,
134  UCRL--50400, Vol.6, Rev.5
135\item
136``K--Shell Photoelectric Cross Sections from 200 keV to 2 MeV", R H Pratt, R D Levee,
137 R L Pexton and W Aron, Phys. Rev. 134 (1964) 4A
138\item
139``Relativistic K--Shell Photoeffect", M. Gavrila, Phys. Rev. 113 (1959) 2
140\item
141``Relativistic L--Shell Photoeffect", M. Gavrila, Phys. Rev. 124 (1961) 4
142\item
143``Monte Carlo Generation of 2BNBremsstrahlung Distribution", 
144  L. Peralta, P. Rodrigues, A. Trindade
145  CERN EXT--2004--039 (July, 2003)
146\end{enumerate}
147
148\end{htmlonly}
Note: See TracBrowser for help on using the repository browser.