source: trunk/documents/UserDoc/UsersGuides/PhysicsReferenceManual/latex/electromagnetic/lowenergy/polarizedcompton.tex

Last change on this file was 1208, checked in by garnier, 15 years ago

CVS update

File size: 3.4 KB
Line 
1
2\section{Compton Scattering by Linearly Polarized Gamma Rays}
3
4
5\subsection{The Cross Section}
6
7The quantum mechanical Klein - Nishina differential cross section for
8polarized photons is [Heitler 1954]:
9
10\[\frac{d\sigma}{d\Omega} = \frac{1}{4}r_0^2 \frac{h\nu^2}{h\nu_o^2} \frac{h\nu_o^2}{h\nu^2} \left[\frac{h\nu_o}{h\nu}+\frac{h\nu}{h\nu_o}-2+4 cos^2\Theta \right] \]
11
12\noindent
13where $\Theta$ is the angle between the two polarization vectors.  In terms
14of the polar and azimuthal angles $ (\theta, \phi) $ this cross section can
15be written as
16
17\[\frac{d\sigma}{d\Omega} = \frac{1}{2}r_0^2 \frac{h\nu^2}{h\nu_o^2} \frac{h\nu_o^2}{h\nu^2} \left[\frac{h\nu_o}{h\nu}+\frac{h\nu}{h\nu_o}-2 cos^2\phi sin^2\theta \right] \] .
18
19
20\subsection{Angular Distribution}
21
22
23The integration of this cross section over the azimuthal angle produces the
24standard cross section.  The angular and energy distribution are then
25obtained in the same way as for the standard process.  Using these values
26for the polar angle and the energy, the azimuthal angle is sampled from the
27following distribution:
28
29\[ P(\phi)= 1 - \frac{a}{b} cos^2\phi \]
30
31\noindent
32where $a = sin^2\theta $ and $b = \epsilon + 1/\epsilon$$\epsilon$ is
33the ratio between the scattered photon energy and the incident photon
34energy.
35
36
37\subsection{Polarization Vector}
38
39The components of the vector polarization of the scattered photon are
40calculated from
41
42\[ \vec{\epsilon'_\bot} = \frac{1}{N} \left( \hat{j} cos\theta - \hat{k} sin\theta sin\phi \right) sin\beta \]
43
44 
45\[ \vec{\epsilon'_\|} = \left[ N \hat{i}- \frac{1}{N} \hat{j} sin^2\theta sin\phi cos\phi - \frac{1}{N} \hat{k} sin\theta cos\theta cos\phi \right] cos\beta \]
46
47\noindent
48where \[ N = \sqrt{1-sin^2\theta cos^2\phi} . \]
49
50\noindent
51$cos\beta$ is calculated from $cos\Theta = N cos\beta $, while $cos\Theta$ 
52is sampled from the Klein - Nishina distribution.
53
54The binding effects and the Compton profile are neglected.
55The kinetic energy and momentum of the recoil electron are then
56
57\[ T_{el} = E - E' \]
58\[ \vec{P_{el}} = \vec{P_\gamma} - \vec{P_\gamma '} . \]
59
60The momentum vector of the scattered photon $\vec{P_\gamma}$ and its
61polarization vector are transformed into the {\tt World} coordinate system.
62The polarization and the direction of the scattered gamma in the final
63state are calculated in the reference frame in which the incoming photon is
64along the $z$-axis and has its polarization vector along the $x$-axis.  The
65transformation to the {\tt World} coordinate system performs a linear
66combination of the initial direction, the initial poalrization and the cross
67product between them, using the projections of the calculated quantities
68along these axes.
69
70\subsection{Unpolarized Photons}
71
72A special treatment is devoted to unpolarized photons.  In this case a
73random polarization in the plane perpendicular to the incident photon is
74selected.
75
76\subsection{Status of this document}
77
7818.06.2001 created by Gerardo Depaola and Francesco Longo \\
7910.06.2002 revision by Francesco Longo \\
8026.01.2003 minor re-wording and correction of equations by D.H. Wright
81
82\begin{latexonly}
83
84\begin{thebibliography}{99}
85
86\bibitem{Heitler} W. Heitler {\em The Quantum Theory of Radiation, Oxford Clarendom Press } (1954)
87
88\end{thebibliography}
89
90\end{latexonly}
91
92\begin{htmlonly}
93
94\subsection{Bibliography}
95
96\begin{enumerate}
97\item W. Heitler {\em The Quantum Theory of Radiation, Oxford Clarendom Press } (1954)
98\end{enumerate}
99
100\end{htmlonly}
101
102
103
104
105
Note: See TracBrowser for help on using the repository browser.