source: trunk/documents/UserDoc/UsersGuides/PhysicsReferenceManual/latex/electromagnetic/lowenergy/rayleigh.tex

Last change on this file was 1208, checked in by garnier, 15 years ago

CVS update

File size: 3.1 KB
Line 
1\section{Rayleigh Scattering}
2
3\subsection{Total Cross Section}
4The total cross section for the Rayleigh scattering process
5%(also called coherent scattering~\footnote{Coherent scattering
6%is usually described as an interaction
7%between a photon and the inner most, most tightly bound electrons of an atom.})
8is determined from the data as described in section \ref{subsubsigmatot}.
9
10\subsection{Sampling of the Final State}
11
12The coherent scattered photon angle $\theta$ is sampled according to the
13distribution obtained from the product of the Rayleigh formula $(1+\cos^2\theta)\sin\theta $ and the square of Hubbel's form factor
14$FF^2(q)$~\cite{re-hubbel2}~\cite{re-reda}
15\begin{equation}
16\Phi(E, \theta) = [ 1+\cos^2 \theta] \sin \theta  \times FF^2(q) ,
17\end{equation} 
18where $q = 2 E \sin(\theta/2)$ is the momentum transfer.
19
20Form factors introduce a dependency on the initial energy $E$ of the photon
21that is not taken into account in the Rayleigh formula.  At low energies,
22form factors are isotropic and do not affect angular distribution, while at
23high energies they are forward peaked.
24
25The sampling procedure is as follows~\cite{re-stepanek}:
26\begin{enumerate}
27\item $cos\theta$ is chosen from a uniform distribution between -1 and 1
28\item the form factor $FF$ is extracted from the data table for the
29considered element, using logarithmic data interpolation,
30for $q = 2 E \cdot\sin(\theta/2)$
31\item if the value obtained for $\Phi(E, \theta)$ is larger than a random
32number uniformly distributed between 0 and $Z^2$, the procedure is repeated
33from step 1, otherwise $\theta$ is taken as the photon scattering angle
34with respect to its incident direction.
35\item the azimuthal direction of the scattered photon is chosen at random.
36\end{enumerate}
37
38
39\subsection{Status of this document}
40
41\noindent
4230.09.1999 created by Alessandra Forti\\
4307.02.2000 modified by V\'eronique Lef\'ebure\\
4408.03.2000 reviewed by Petteri Nieminen and Maria Grazia Pia\\
4510.06.2002 modified by Francesco Longo and Gerardo Depaola\\
4626.01.2003 minor re-write and correction of equations by D.H. Wright
47
48\begin{latexonly}
49
50\begin{thebibliography}{99}
51\bibitem{re-hubbel2}
52  "Relativistic Atom Form Factors and Photon Coherent Scattering Cross Sections",
53  J.H. Hubbell et al., J.Phys.Chem.Ref.Data, 8,69(1979)
54\bibitem{re-reda}
55  "A simple model of photon transport",
56  D.E. Cullen, Nucl. Instr. Meth. in Phys. Res. B 101(1995)499-510
57\bibitem{re-stepanek}
58   "New Photon, Positron and Electron Interaction Data for Geant in Energy Range
59   from 1 eV to 10 TeV",
60   J. Stepanek, Draft to be submitted for publication
61\end{thebibliography}
62
63\end{latexonly}
64
65\begin{htmlonly}
66
67\subsection{Bibliography}
68
69\begin{enumerate}
70\item
71  "Relativistic Atom Form Factors and Photon Coherent Scattering Cross
72   Sections", J.H. Hubbell et al., J.Phys.Chem.Ref.Data, 8,69(1979)
73\item
74  "A simple model of photon transport",
75  D.E. Cullen, Nucl. Instr. Meth. in Phys. Res. B 101(1995)499-510
76\item
77   "New Photon, Positron and Electron Interaction Data for Geant in Energy
78   Range from 1 eV to 10 TeV",
79   J. Stepanek, Draft to be submitted for publication
80\end{enumerate}
81
82\end{htmlonly}
Note: See TracBrowser for help on using the repository browser.