source: trunk/documents/UserDoc/UsersGuides/PhysicsReferenceManual/latex/electromagnetic/miscellaneous/setcuts.tex @ 1292

Last change on this file since 1292 was 1208, checked in by garnier, 15 years ago

CVS update

File size: 7.1 KB
Line 
1\section{Conversion from range to kinetic energy}
2
3\subsection{Charged particles}
4The algorithm which converts the stopping range of a charged particle to the
5corresponding kinetic energy is essentially the same for all charged
6particle types: given the stopping range of a particle, a vector holding the
7corresponding kinetic energy for every material is constructed.  Only the
8energy loss formulae are different, depending on whether the particle is an
9electron, a positron, or a heavy charged particle (muon, pion, proton, etc.). 
10 \noindent
11For protons and anti-protons the above procedure is followed, but for other
12charged hadrons, the cut values in kinetic energy are computed using the
13proton and anti-proton energy loss and range tables.
14
15\subsubsection{General scheme}
16   \begin{enumerate}
17      \item An energy loss table is created and filled for all the elements
18            in the element table.
19      \item For every material in the material table the following steps
20            are performed:
21            \begin{enumerate}
22              \item a range vector is constructed using the energy loss table
23                    and specific formulae for the low energy part of the
24                    calculations,
25              \item the conversion from stopping range to kinetic energy is
26                    performed and the corresponding element of the
27                    {\tt KineticEnergyCuts} vector is set,
28              \item the range vector is deleted.
29            \end{enumerate}
30      \item The energy loss table is deleted at the end of the process.
31   \end{enumerate}
32
33\subsubsection{Energy loss formula for heavy charged particles}
34The energy loss of the particle is calculated from a simplified Bethe-Bloch
35formula if the kinetic energy of the particle is above the value
36     \[
37     T_{lim}=2 \,MeV \times \left( \frac {\mbox{particle mass}}
38                                         {\mbox{proton mass}}  \right ).
39     \]
40The word ``simplified'' means that the low energy shell correction term and
41the high energy Sternheimer density correction term have been omitted.
42Below the energy value $T_{lim}$ a simple parameterized energy loss formula
43is used to compute the loss, which reproduces the energy loss values
44of the stopping power tables fairly well.  The main reason for using a
45parameterized formula for low energy is that the Bethe-Bloch formula breaks
46down at low energy. The formula has the following form :
47     \[
48    \frac{dE}{dx} = \left \{ \begin{array}{ll}
49                   a*\sqrt{\frac{T}{M}}+b*\frac{T}{M} & \mbox{for $T \in [0, \, T_0]$}
50                   \\ \\
51                   c*\sqrt{\frac{T}{M}} & \mbox{for $T \in [T_0, \, T_{lim}]$}
52                      \end{array}
53            \right.
54     \]
55   \begin{tabbing}
56      whereb:bbb\= \kill
57      where :  \> M = particle mass \\
58               \> T = kinetic energy \\
59               \> $ T_0=0.1 \, MeV \times Z^{1/3} \times \mbox{ M/(proton mass)} $\\
60               \> Z = atomic number.
61    \end{tabbing}
62The paramaters $a, b$ and $c$ have been chosen in such a way that $dE/dx$ is a
63continuous function of $T$ at $T=T_{lim}$ and $T=T_0$, and $dE/dx$ reaches its
64maximum at the correct $T$ value.
65
66\subsubsection{Energy loss of electrons and positrons}
67The Berger-Seltzer energy loss formula has been used for $T > 10$ keV to
68compute the energy loss due to ionization. This formula plays the role of
69the Bethe-Bloch equation for electrons (see e.g. the GEANT3 manual). Below
7010 keV the simple $c$/($T$/mass of electron) parameterization has been used,
71where $c$ can be determined from the requirement of continuity at $T = 10$ keV.
72For electrons the radiation loss is important even at relatively low (few MeV)
73energies, so a second term has been added to the energy loss formula which
74accounts for radiation losses (losses due to bremsstrahlung). This second
75term is an empirical, parameterized formula.
76For positrons a different formula is used to calculate the ionization loss,
77while the term accounting for the radiation losses is the same as that
78for electrons.
79
80\subsubsection{Range calculation}
81The stopping range is defined as
82   \[ R(T)= \int_0^T \frac{1}{(dE/dx)} \, dE \] .
83The integration has been done analytically for the low energy part and
84numerically above an energy limit.
85 
86\subsection{Photons}
87Starting from a particle cut given in absorption lengths, the method
88constructs a vector holding the cut values in kinetic energy for every
89material. The main steps of the algorithm are the following :
90\subsubsection{General scheme}
91   \begin{enumerate}
92      \item A cross section table is created and filled for all the elements
93            in the element table.
94      \item For every material in the material table the following steps are
95            performed:
96            \begin{enumerate}
97              \item an absorption length vector is constructed using the
98                    cross section table
99              \item the conversion from absorption length to kinetic energy is
100                    performed and the corresponding element of the
101                    {\tt KineticEnergyCuts} vector is set
102                    (It contains the particle cut value in kinetic energy
103                    for the actual material.),
104              \item the absorption length vector is deleted.
105            \end{enumerate}
106      \item The cross section table is deleted at the end of the process.
107   \end{enumerate}
108\subsubsection{Cross section formula for elements}
109An approximate empirical formula is used to compute the {\em absorption
110cross section} of a photon in an element.  Here, the {\em absorption cross
111section} means the sum of the cross sections of the gamma conversion, Compton
112scattering and photoelectric effect.  These processes are the ``destructive''
113processes for photons: they destroy the photon or decrease its energy.
114(The coherent or Rayleigh scattering changes the direction of the gamma
115only; its cross section is not included in the {\em absorption cross section}.)
116
117\subsubsection{Absorption length vector}
118The {\tt AbsorptionLength} vector is calculated for every material as :
119 \begin{center}
120   {\tt AbsorptionLength} = 5/(macroscopic absorption cross section) .
121 \end{center}
122The factor 5 comes from the requirement that the probability of having
123no 'destructive' interaction should be small, hence
124\begin{eqnarray*} 
125  \exp(-\mbox{{\tt AbsorptionLength * MacroscopicCrossSection}}) &=&\exp(-5) \\
126  &=& 6.7 \times 10^{-3}
127  \end{eqnarray*}
128
129\subsubsection{Meaningful cuts in absorption length}
130The photon cross section for a material has a minimum at a certain kinetic
131energy $T_{min}$. The {\tt AbsorptionLength} has a maximum at $T=T_{min}$,
132the value of the maximal {\tt AbsorptionLength} is the biggest "meaningful"
133cut in absorption length. If the cut given by the user is bigger than this
134maximum, a warning is printed and the cut in kinetic energy is set to the
135maximum gamma energy (i.e. all the photons will be killed in the material). 
136
137\subsection{Status of this document}
138  \ 9.10.98 created by L. Urb\'an. \\
139   27.07.01 minor revision M.Maire \\
140   17.08.04 moved to common to all charged particles (mma) \\
141   04.12.04 minor re-wording by D.H. Wright \\
142
Note: See TracBrowser for help on using the repository browser.