source: trunk/documents/UserDoc/UsersGuides/PhysicsReferenceManual/latex/electromagnetic/muons/msc.tex

Last change on this file was 1208, checked in by garnier, 15 years ago

CVS update

File size: 6.7 KB
Line 
1 \chapter[Multiple scattering]{Multiple scattering}
2
3 The G4MultipleScattering class simulates the multiple scattering of
4charged particles in material.  It uses a new multiple scattering (MSC)
5model which  does not use the Moliere formalism \cite{msc.moliere}.
6This MSC model simulates the scattering of the
7particle after a given step , computes the mean path length
8correction and the mean lateral displacement as well.
9
10 Let us define a few notation first.
11
12 The true path length ('t' path length) is the total length travelled
13by the particle. All the physical processes restrict this 't' step.
14
15 The geometrical ( or 'z') path length is the straight distance between
16the starting and endpoint of the step , if there is no magnetic field.
17The geometry gives a constraint for this 'z' step. It should be noted,
18that the geometrical step length is meaningful in the case of magnetic
19field, too, but in this case it is a distance along a curved
20trajectory.
21
22 The mean properties of the multiple scattering process are determined
23by the transport mean free path , \(\lambda\) , which is a function of the
24energy in a given material.Some of the mean properties - the mean lateral
25 displacement and the second moment of cos(theta) - depend on the second
26 transport mean free path, too. (The transport mean free path is called
27 first transport mean free path as well.)
28
29  The 't'\(\Rightarrow\)'z' (true path length -- geometrical path length) transformation is given by the simple equation
30
31   \begin{equation}
32         z = \lambda*(1.-exp(-t/\lambda))                \label{msc.a}
33   \end{equation}
34
35 which is an exact result for the mean values of z , if
36the differential cross section has an axial symmetry and the energy loss
37can be neglected .
38  This formula and some other expressions for the first moments of the
39spatial distribution after a given 'true' path length t have been taken
40from the excellent paper of Fernandez-Varea et al. \cite{msc.fernandez},
41but the expressions have been calculated originally by Goudsmit and
42Saunderson \cite{msc.goudsmit} and Lewis \cite{msc.lewis}.
43  Inverting eq. \ref{msc.a} the 'z'\(\Rightarrow\)'t' transformation can
44be written as
45
46   \begin{equation}
47        t = -\lambda*ln(1.-z/\lambda)                     \label{msc.b}
48   \end{equation}
49
50 where \(z < \lambda\) should be required (this condition is fulfilled
51 if z has been computed from eq. \ref{msc.a}).
52
53  The mean value of \(cos(\theta)\) - \(\theta\) is the scattering angle after a
54true step length t - is
55
56   \begin{equation}
57          <cos(\theta)> = exp(-t/\lambda)               \label{msc.c} 
58   \end{equation}
59
60  The transport mean free path values have been calculated by Liljequist
61et al. \cite{msc.liljequist2, msc.liljequist1} for electrons and positrons
62in the kinetic energy range \(0.1 keV -- 20 MeV\) in 15 materials.  The
63MSC model uses these values with an appropriate interpolation or
64extrapolation in the atomic number
65\(Z\) and in the velocity of the particle \(\beta\) , when it is necessary.
66 
67 The quantity \(cos(\theta)\) is sampled in the MSC model according to a model function
68 \(f(cos(\theta))\). The shape of this function has been choosen in such a way,
69that\(f(cos(\theta))\) reproduces the results of the direct simulation ot the particle
70transport rather well and eq. \ref{msc.c} is satisfied.
71 The functional form of this model function is
72
73  \begin{equation}
74      f(x) = p \frac{(a + 1)^2 (a - 1)^2}{2 a} \frac{1}{(a-x)^3}
75            + (1-p) \frac{1}{2}                            \label{msc.d}
76  \end{equation}
77
78 where  \( x= cos(\theta)\) , \( 0 \leq p \leq 1\) and \( a > 1\) . The model
79 parameters \(p\) and \(a\) depend on the path length t , the energy of the
80 particle and the material.They are not independent parameters , they should
81 satisfy the constraint
82
83  \begin{equation}
84        \frac{p}{a} = exp(-\frac{t}{\lambda})              \label{msc.e}
85  \end{equation} 
86
87 which follows from eq. \ref{msc.c} .
88
89  The mean lateral displacement is given by a more complicated formula
90(see the paper \cite{msc.fernandez} ), but this quantity also can be calculated
91 relatively easily and accurately.
92 
93  It is worth to note that in this MSC model there is no step limitation
94 originated from the multiple scattering process. Another important feature
95 of this model
96 that the total 'true' path length of the particle does not depend the
97 length of the steps . Most of the algorithms used in simulations do not have
98 these properties.
99 
100 In the case of heavy charged particles ( \(\mu,\pi,proton,etc.\) ) the
101 mean transport free path is calculated from the \(e+/e-\)  \(\lambda\) values
102 with a 'scaling'.
103
104 In its present form the model computes and uses {\em mean}  path length
105 corrections and lateral displacements, the only {\em random} quantity is
106 the scattering angle \(\theta\) which is sampled according to the model
107 function \( f \).   
108
109  The G4MultipleScattering process has  'AlongStep' and  'PostStep'
110parts.
111
112  The AlongStepGetPhysicalInteractionLength function performs the\linebreak
113 \mbox{'t' step \(\Rightarrow\) 'z' step} transformation . It should be called after the
114other physics GetPhysicalInteractionLength functions but before
115the GetPhysicalInteractionLength of the transportation process.The
116reason for this restriction is the following: The physics processes
117'feel' the true path length travelled by the particle , the geometry
118(transport) uses the 'z' step length.If we want to compare the minimum
119step size coming from the physics with the constraint of the geometry,
120we have make the transformation.
121
122  The AlongStepDoIt function of the process performs the inverse,
123 'z'\(\Rightarrow\)'t' transformation.This function should be called after the
124AlongStepDoIt of the transportation process , i.e. after the particle
125relocation determined by the geometrical step length, but before applying
126any other (physics) AlongStepDoIt.
127
128  The PostStepGetPhysicalInteractionLength part of the multiple
129scattering process is very simple , it sets the force flag to 'Forced'
130in order to ensure the call of the PostStepDoIt in every step and
131returns a big value as interaction length (that means that the multiple
132scattering process does not restrict the step size).
133
134\section{Status of this document}
135  9.10.98  created by L. Urb\'an.
136  \\5.12.98   editing by J.P. Wellisch.
137
138
139\begin{thebibliography}{99}
140\bibitem{msc.moliere}
141   {\em Z. Naturforsch. 3a (1948) 78. }
142\bibitem{msc.fernandez}J. M. Fernandez-Varea et al.
143   {\em NIM B73 (1993) 447.}
144\bibitem{msc.goudsmit}S. Goudsmit and J. L. Saunderson.
145   {\em Phys. Rev. 57 (1940) 24. }
146\bibitem{msc.lewis} H. W. Lewis.
147   {\em Phys. Rev. 78 (1950) 526. }
148\bibitem{msc.liljequist1} D. Liljequist and M. Ismail.
149   {\em J.Appl.Phys. 62 (1987) 342. }
150\bibitem{msc.liljequist2} D. Liljequist et al.
151   {\em J.Appl.Phys. 68 (1990) 3061. }
152\end{thebibliography}
Note: See TracBrowser for help on using the repository browser.