source: trunk/documents/UserDoc/UsersGuides/PhysicsReferenceManual/latex/electromagnetic/muons/mubrem.tex @ 1319

Last change on this file since 1319 was 1208, checked in by garnier, 15 years ago

CVS update

File size: 9.5 KB
Line 
1
2\section[Bremsstrahlung]{Bremsstrahlung} \label{secmubrem}
3
4Bremsstrahlung dominates other muon interaction processes in the region of
5catastrophic collisions ($v \geq 0.1$ ), that is at "moderate" muon
6energies above the kinematic limit for knock--on electron production.
7At high energies ($E \geq 1$ TeV) this process contributes about
840\% of the average muon energy loss.
9
10\subsection{Differential Cross Section}
11
12The differential cross section for muon bremsstrahlung (in units of
13${\rm cm}^{2}/(\mbox{g GeV})$)
14can be written as
15\begin{eqnarray}
16\label{mubrem.a}
17\frac{d \sigma (E,\epsilon,Z,A)}{d \epsilon}&=&
18\frac{16}{3} \alpha N_A (\frac{m}{\mu} r_{e})^2
19\frac{1}{\epsilon A} Z(Z \Phi_n + \Phi_e)(1-v+\frac{3}{4} v^2)\nonumber\\
20&=&0 \quad {\rm if} \quad \epsilon \geq \epsilon_{\rm max} = E-\mu ,
21\end{eqnarray}
22where $\mu$ and $m$ are the muon and electron masses, $Z$ and $A$ are the
23atomic number and atomic weight of the material, and $N_{A}$ is Avogadro's
24number.  If $E$ and $T$ are the initial total and kinetic energy of the
25muon, and $\epsilon$ is the emitted photon energy, then
26$\epsilon = E - E'$ and the relative energy transfer $v = \epsilon /E$.
27
28$\Phi_{n}$ represents the contribution of the nucleus and can be expressed
29as
30\begin{eqnarray*}
31 \Phi_{n} &=& \ln \frac {BZ^{-1/3}(\mu + \delta (D_{n}' \sqrt{e} -2))}
32    {D_{n}'(m+ \delta \sqrt{e}BZ^{-1/3})} ; \\
33   &=&  0 \quad {\rm if} \quad {\rm negative}.
34\end{eqnarray*}
35$\Phi_{e}$ represents the contribution of the electrons and can be expressed
36as
37\begin{eqnarray*}
38  \Phi_{e} &=& \ln \frac {B'Z^{-2/3} \mu }
39   {\left(1+ \displaystyle\frac{\delta \mu}{m^{2} \sqrt{e}}\right)(m+ \delta
40\sqrt{e}
41B'Z^{-2/3})
42}\\
43   &=&  0 \quad {\rm if} \quad \epsilon \geq \epsilon'_{\rm max} = E/(1+
44\mu^{2}/2mE); \\
45   &=&  0 \quad {\rm if} \quad {\rm negative}.   
46\end{eqnarray*}
47In $\Phi_n$ and $\Phi_e$, for all nuclei except hydrogen,
48\begin{eqnarray*}
49\delta &=& \mu^{2} \epsilon /2EE' = \mu^{2} v/2(E- \epsilon);\\
50D'_{n} &=& D_{n}^{(1-1/Z)}, \quad D_{n}= 1.54A^{0.27}; \\
51B &=& 183, \quad B'=1429, \quad \sqrt{e}=1.648(721271).
52\end{eqnarray*}
53%
54For hydrogen ($Z$=1) $B = 202.4,\: B' = 446, \: D_{n}' = D_{n}$.
55
56
57These formulae are taken mostly from Refs. \cite{brem.kel95} and
58\cite{brem.kel97}.  They include improved nuclear size corrections in
59comparison with Ref. \cite{brem.petr68} in the region $v \sim 1$ and low $Z$.
60Bremsstrahlung on atomic electrons (taking into account target recoil and
61atomic binding) is introduced instead of a rough substitution $Z(Z+1)$.
62A correction for processes with nucleus excitation is also
63included \cite{brem.andr94}.
64
65\subsubsection{Applicability and Restrictions of the Method}
66
67The above formulae assume that: \\
681. $E \gg \mu $, hence the ultrarelativistic approximation is used; \\
692. $E \leq 10^{20}$ eV; above this energy, LPM suppression can be expected;\\
703. $v \geq 10^{-6}$ ; below $10^{-6}$ Ter-Mikaelyan suppression takes place.
71However, in the latter region the cross section of muon bremsstrahlung is
72several orders of magnitude less than that of other processes.\\
73The Coulomb correction (for high $Z$) is not included. However, existing
74calculations \cite{brem.andr97} show that for muon bremsstrahlung this
75correction is small.
76
77\subsection{Continuous Energy Loss}
78
79The restricted energy loss for muon bremsstrahlung $(d E/ dx)_{\rm rest}$
80with relative transfers $v = \epsilon / (T+ \mu) \leq v_{\rm cut}$
81can be calculated as follows :
82$$
83\left(\frac{d E}{d x}\right)_{\rm rest}
84= \int_{0}^{\epsilon_{\rm cut}} \epsilon\,\sigma (E,\epsilon )\,d\epsilon
85=
86(T+\mu ) \int_{0}^{v_{\rm cut}}\epsilon\,\sigma (E,\epsilon)\,dv\,.
87$$
88%
89If the user cut $v_{\rm cut} \geq v_{\rm max}=T/(T+ \mu)$, the total
90average energy loss is calculated.  Integration is done using Gaussian
91quadratures, and binning provides an accuracy better than about 0.03\% for
92$T = 1$ GeV, $Z=1$.  This rapidly improves with increasing $T$ and $Z$.
93
94
95\subsection{Total Cross Section}
96
97The integration of the differential cross section over $d\epsilon$ gives the
98total cross section for muon bremsstrahlung:
99\begin{equation}
100\label{mubrem.b}
101\sigma_{\rm tot} (E,\epsilon_{\rm cut})
102= \int_{\epsilon_{\rm cut}}^{\epsilon_{\rm max}}\sigma (E,\epsilon )
103d \epsilon  =
104 \int_{\ln v_{\rm cut}}^{\ln v_{\rm max}}\epsilon \sigma (E,\epsilon)
105d(\ln v) ,
106\end{equation}
107where $v_{\rm max}=T/(T+ \mu)$.  If $v_{\rm cut} \geq v_{\rm max}$ ,
108$\sigma_{\rm tot}=0$.
109
110\subsection{Sampling}
111
112The photon energy $\epsilon_{p}$ is found by numerically solving the
113equation :
114$$ P \:= \int_{\epsilon_{p}}^{\epsilon_{\rm max}}  \sigma (E,\epsilon,Z,A
115) \, d \epsilon 
116 \left/ \int_{\epsilon_{\rm cut}}^{\epsilon_{\rm max}} 
117 \sigma (E,\epsilon,Z,A ) \, d \epsilon\right. .
118$$
119Here $P$ is the random uniform probability, $\epsilon_{\rm max}=T$, and
120$\epsilon_{\rm cut}=(T+\mu) \cdot v_{\rm cut}$$v_{min.cut}=10^{-5}$ is
121the minimal relative energy transfer adopted in the algorithm.
122
123For fast sampling, the solution of the above equation is tabulated at
124initialization time for selected $Z$, $T$ and $P$.  During simulation, this
125table is interpolated in order to find the value of $\epsilon_{p}$ 
126corresponding to the probability $P$.
127
128The tabulation routine uses accurate functions for the differential cross
129section.  The table contains values of
130\begin{equation}
131\label{mubrem.c}
132 x_p = \ln (v_p / v_{\rm max})/\ln (v_{\rm max}/v_{\rm cut}) ,
133\end{equation}
134where $v_{p} = \epsilon_{p}/(T+ \mu)$ and $v_{\rm max} = T/(T+ \mu)$.
135Tabulation is performed in the range
136$1 \leq Z \leq 128$, $1 \leq T \leq 1000$~PeV, $10^{-5} \leq P \leq 1$
137with constant logarithmic steps.  Atomic weight (which is a required
138parameter in the cross section) is estimated here with an iterative solution of the approximate relation:
139$$ A = Z\,(2+0.015\,A^{2/3}).$$
140For $Z=1$, $A=1$ is used.
141
142To find $x_{p}$ (and thus $\epsilon_{p}$) corresponding to a given
143probability $P$, the sampling method performs a linear interpolation in
144$\ln Z$ and $\ln T$, and a cubic, 4 point Lagrangian interpolation
145in $\ln P$.  For $P \leq P_{\rm min}$, a linear interpolation in $(P,x)$ 
146coordinates is used, with $x = 0$ at $P = 0$.  Then the energy
147$\epsilon_p$ is obtained from the inverse transformation of \ref{mubrem.c} :
148%
149$$\epsilon_{p} = (T+ \mu ) v_{\rm max} (v_{\rm max}/v_{\rm cut})^{x_{p}} $$
150%
151The algorithm with the parameters described above has been
152tested for various $Z$ and $T$. It reproduces the differential cross section
153to within 0.2 -- 0.7 \% for $T \geq 10$~GeV.  The average total energy loss
154is accurate to within 0.5\%.  While accuracy improves with increasing $T$,
155satisfactory results are also obtained for $1 \leq T \leq 10$~GeV.
156
157It is important to note that this sampling scheme allows the generation of
158$\epsilon_{p}$ for different user cuts on $v$ which are above
159$v_{\rm min.cut}$.  To perform such a simulation, it is sufficient to
160define a new probability variable
161%
162$$P' = P \: \sigma_{\rm tot} \: (v_{\rm user.cut}) / \sigma_{\rm tot} (v_{\rm 
163min.cut})$$
164%
165and use it in the sampling method.  Time consuming re-calculation of the
1663-dimensional table is therefore not required because only the tabulation
167of $\sigma_{\rm tot}(v_{\rm user.cut})$ is needed.
168
169The small-angle, ultrarelativistic approximation is used for the simulation
170(with about 20\% accuracy at $\theta\le\theta^*\approx1$) of the angular
171distribution of the final state muon and photon.  Since the target recoil is
172small, the muon and photon are directed symmetrically (with equal transverse momenta and coplanar with the initial muon):
173\begin{equation}
174p_{\perp \mu} = p_{\perp \gamma}, \quad {\rm where} \quad p_{\perp \mu}=
175E' \theta_{\mu}, \quad p_{\perp \gamma} = \epsilon \theta_{\gamma} .
176\end{equation}
177$\theta_{\mu}$ and $\theta_{\gamma}$ are muon and photon emission angles.
178The distribution in the variable
179$r=E\theta_{\gamma}/\mu$ is given by
180\begin{equation}
181f(r) dr \sim r dr/(1+r^2)^2 .
182\end{equation}
183Random angles are sampled as follows:
184\begin{equation}
185\theta_{\gamma} = \frac{\mu}{E} r \quad
186\theta_{\mu} = \frac{\epsilon}{E'} \theta_{\gamma} ,
187\end{equation}
188where
189$$
190r=\sqrt{\frac{a}{1-a}}\,,\quad a=\xi\,\frac{r_{\rm \max}^2}{1+r_{\rm max}^2}\,,\quad
191r_{\max}=\min(1,E'/\epsilon)\cdot E\,\theta^*/\mu\,,$$
192and $\xi$ is a random number uniformly distributed between 0 and 1.
193
194\subsection{Status of this document}
195
19609.10.98 created by R.Kokoulin and A.Rybin\\
19717.05.00 updated by S.Kelner, R.Kokoulin and A.Rybin\\
19830.11.02 re-written by D.H. Wright\\
199
200\begin{latexonly}
201
202\begin{thebibliography}{599}
203
204\bibitem{brem.kel95}
205  S.R.Kelner, R.P.Kokoulin, A.A.Petrukhin. Preprint MEPhI 024-95, Moscow, 1995;
206CERN SCAN-9510048.
207\bibitem{brem.kel97}
208  S.R.Kelner, R.P.Kokoulin, A.A.Petrukhin. Phys. Atomic Nuclei, {\bf 60} (1997) 576.
209\bibitem{brem.petr68}
210  A.A.Petrukhin, V.V.Shestakov. Canad.J.Phys., {\bf 46} (1968) S377.
211\bibitem{brem.andr94}
212  Yu.M.Andreyev, L.B.Bezrukov, E.V.Bugaev. Phys. Atomic Nuclei, {\bf 57} (1994)
2132066.
214\bibitem{brem.andr97}
215  Yu.M.Andreev, E.V.Bugaev, Phys. Rev. D, {\bf 55} (1997) 1233.
216\end{thebibliography}
217
218\end{latexonly}
219
220\begin{htmlonly}
221
222\subsection{Bibliography}
223
224\begin{enumerate}
225\item S.R.Kelner, R.P.Kokoulin, A.A.Petrukhin. Preprint MEPhI 024-95, Moscow,
2261995; CERN SCAN-9510048.
227\item S.R.Kelner, R.P.Kokoulin, A.A.Petrukhin. Phys. Atomic Nuclei, {\bf 60} 
228(1997) 576.
229\item A.A.Petrukhin, V.V.Shestakov. Canad.J.Phys., {\bf 46} (1968) S377.
230\item Yu.M.Andreyev, L.B.Bezrukov, E.V.Bugaev. Phys. Atomic Nuclei, {\bf 57} 
231(1994) 2066.
232\item Yu.M.Andreev, E.V.Bugaev, Phys. Rev. D, {\bf 55} (1997) 1233.
233\end{enumerate}
234
235\end{htmlonly}
Note: See TracBrowser for help on using the repository browser.