source: trunk/documents/UserDoc/UsersGuides/PhysicsReferenceManual/latex/electromagnetic/muons/muion.tex @ 1231

Last change on this file since 1231 was 1208, checked in by garnier, 15 years ago

CVS update

File size: 7.9 KB
Line 
1\section[Ionization]{Ionization}
2 
3\subsection{Method}
4
5 The class $G4MuIonisation$ provides the continuous energy loss due to
6ionization and simulates the 'discrete' part of the ionization, that is delta
7rays produced by muons. The approach described in Section \ref{en_loss} is used.
8The value of the maximum energy transferable to a free electron $T_{max}$ 
9is given by the following relation:
10\begin{equation}
11\label{muion.c}
12T_{max} =\frac{2mc^2(\gamma^2 -1)}{1+2\gamma (m/M)+(m/M)^2 } .
13\end{equation}
14Here $m$ is the electron mass and $M$ the muon mass.  The method of
15calculation of the continuous energy loss and the total cross section are
16explained below.
17
18\subsection{Continuous Energy Loss}
19
20The integration of \ref{comion.a} leads to the Bethe-Bloch restricted energy
21loss formula \cite{muion.pdg} :
22\begin{equation}
23\label{muion1}
24\left. \frac{dE}{dx} \right]_{T < T_{cut}} =
25       2 \pi r_e^2 mc^2 n_{el} \frac{(z_p)^2}{\beta^2}
26       \left [\ln \left(\frac{2mc^2 \beta^2 \gamma^2 T_{up}} {I^2} \right)
27       - \beta^2 \left( 1 + \frac{T_{up}}{T_{max}} \right)
28       - \delta - \frac{2C_e}{Z} \right ]
29\end{equation}
30 where
31\[
32\begin{array}{ll}
33r_e          & \mbox{classical electron radius:}
34                  \quad e^2/(4 \pi \epsilon_0 mc^2 )        \\
35mc^2         & \mbox{mass-energy of the electron}           \\
36n_{el}       & \mbox{electrons density in the material}     \\
37I            & \mbox{mean excitation energy in the material}\\
38\gamma       & \mbox{$E/mc^2$}                              \\
39\beta^2      & 1-(1/\gamma^2)                               \\
40T_{up}       & \min(T_{cut},T_{max})                        \\
41\delta       & \mbox{density effect function}               \\
42C_e          & \mbox{shell correction function}
43\end{array}
44\]
45In a single element the electron density is
46$$ n_{el} = Z \: n_{at} = Z \: \frac{\mathcal{N}_{av} \rho}{A} $$
47($\mathcal{N}_{av}$: Avogadro number, $\rho$: density of the material,
48 $A$: mass of a mole).  In a compound material
49$$ 
50n_{el} = \sum_i Z_i \: n_{ati}
51       = \sum_i Z_i \: \frac{\mathcal{N}_{av} w_i \rho}{A_i} .
52$$
53$w_i$ is the proportion by mass of the $i^{th}$ element, with molar mass
54$A_i$.
55
56
57The mean excitation energy, $I$, for all elements is tabulated according to the
58ICRU recommended values \cite{muion.icru1}.
59
60\subsubsection{Density Correction}
61
62$\delta$ is a correction term which takes into account the reduction
63in energy loss due to the so-called {\it density effect}. This becomes
64important at high energy because media have a tendency to become
65polarised as the incident particle velocity increases. As a consequence,
66the atoms in a medium can no longer be considered as isolated. To correct
67for this effect the formulation of Sternheimer~\cite{muion.sternheimer}
68is used:
69\input{electromagnetic/utils/densityeffect}
70
71\subsubsection{Shell Correction}
72
73$2C_e/Z$ is the so-called {\it shell correction term} which accounts for the
74fact that, at low energies for light elements and at all energies for heavy
75ones, the probability of collision with the electrons of the inner atomic
76shells (K, L, etc.) is negligible.  The semi-empirical formula used in
77{\sc Geant4}, applicable to all materials, is due to
78Barkas \cite{muion.barkas}:
79\begin{equation}
80\label{muion2}
81C_e(I, \beta\gamma) = \frac{a(I)}{(\beta\gamma)^2}
82                     +\frac{b(I)}{(\beta\gamma)^4}
83                     +\frac{c(I)}{(\beta\gamma)^6} .
84\end{equation}
85The functions a(I), b(I), c(I) can be found in the source code.  This formula
86breaks down at low energies, and is valid only when
87$\beta\gamma > 0.13$ ($T > 7.9$ MeV for a proton).  For $\beta\gamma \leq
880.13$ the shell correction term is calculated as:
89\begin{equation}
90\label{muion3}
91\left . C_{e}(I,\beta\gamma) \rule{0mm}{5mm} \right |_{\beta\gamma \leq 0.13}
92 = C_{e}(I,\beta\gamma=0.13)\frac{\ln(T/T_{2l})}{\ln(7.9 \: \rm MeV/T_{2l})}
93\end{equation}
94i.e. the correction is switched off logarithmically from $T=7.9$ MeV
95to $T=T_{2l}=2$ MeV.
96
97
98\subsubsection{Parameterization}
99
100The mean energy loss can be described by the Bethe-Bloch formula
101(\ref{muion1}) only if the projectile velocity is larger than that of the
102orbital electrons.  In the low energy region this is not the case, and the
103parameterization from the ICRU'49 report \cite{muion.ICRU49}
104is used in the $G4BraggModel$ class. The Bethe-Bloch model is applied to
105muons of higher kinetic energies
106\begin{equation}
107\label{muion.1}
108T > 2 * M_{\mu}/M_{proton} MeV.
109\end{equation}
110The details of the low energy parameterization are described in
111Section \ref{le_had_ion}.
112
113\subsection{Total Cross Section per Atom and Mean Free Path}
114
115For $T \gg I $ the differential cross section can be written as
116\cite{muion.pdg} 
117\begin{equation}
118\label{muion.i}
119\frac{d\sigma }{dT} = 2\pi r_e^2 mc^2 Z \frac{z_p^2}{\beta^2} \frac{1}{T^2}
120     \left[ 1 - \beta^2 \frac{T}{T_{max}} + \frac{T^2}{2E^2} \right] .
121\end{equation}
122In {\sc Geant4} $T_{cut} \geq 1$ keV.  Integrating from $T_{cut}$ to
123$T_{max}$ gives the total cross-section per atom :
124\begin{eqnarray}
125\sigma (Z,E,T_{cut}) & = & \frac {2\pi r_e^2 Z z_p^2}{\beta^2}mc^2 \times 
126  \\ & &     \left[ \left( \frac{1}{T_{cut}} - \frac{1}{T_{max}} \right)
127                   - \frac{\beta^2}{T_{max}} \ln \frac{T_{max}}{T_{cut}}
128                   + \frac{T_{max} - T_{cut}}{2E^2}
129             \right] . \nonumber   
130\end{eqnarray}
131In a given material the mean free path is
132\begin{equation}
133\begin{array}{lll} 
134\lambda = (n_{at} \cdot \sigma)^{-1} & or &
135\lambda = \left( \sum_i n_{ati} \cdot \sigma_i \right)^{-1} .
136\end{array}
137\end{equation}
138The mean free path is tabulated during initialization as a function of the
139material and of the energy of the incident muon.
140
141\subsection{Simulating Delta-ray Production}
142
143A short overview of the sampling method is given in Chapter \ref{secmessel}.
144Apart from the normalization, the cross section \ref{muion.i} can be
145factorized :
146\begin{eqnarray}
147\frac{d\sigma}{dT}=f(T) g(T) &with& T \in [T_{cut}, \ T_{max}]
148\end{eqnarray}
149where
150\begin{eqnarray}
151f(T) &=& \left(\frac{1}{T_{cut}} - \frac{1}{T_{max}} \right) \frac{1}{T^2} \\
152g(T) &=& 1 - \beta^2 \frac{T}{T_{max}} + \frac{T^2}{2E^2} .
153\end{eqnarray}
154The energy $T$ is chosen by
155\begin{enumerate}
156\item sampling $T$ from $f(T)$
157\item calculating the rejection function $g(T)$ and accepting the
158      sampled $T$ with a probability of $g(T)$.
159\end{enumerate}
160After successful sampling of the energy, the direction of the scattered
161electron is generated with respect to the direction of the incident muon.
162The azimuthal angle $\phi$ is generated isotropically.  The polar angle
163$\theta$ is calculated from energy-momentum conservation.  This information
164is used to calculate the energy and momentum of both scattered
165particles and to transform them into the {\em global} coordinate system.
166
167\subsection{Status of this document}
168  09.10.98  created by L. Urb\'an. \\
169  14.12.01  revised by M.Maire \\
170  30.11.02  re-worded by D.H. Wright \\
171  01.12.03 revised by V. Ivanchenko     \\
172
173\begin{latexonly}
174
175\begin{thebibliography}{99}
176
177\bibitem{muion.pdg}
178  Particle Data Group. Rev. of Particle Properties.
179   Eur. Phys. J. C15. (2000) 1. http://pdg.lbl.gov 
180\bibitem{muion.icru1} 
181  ICRU Report No. 37 (1984)
182\bibitem{muion.sternheimer}
183  R.M.Sternheimer. Phys.Rev. B3 (1971) 3681.
184\bibitem{muion.barkas}
185  W. H. Barkas. Technical Report 10292,UCRL, August 1962.
186\bibitem{muion.ICRU49}ICRU (A.~Allisy et al),
187Stopping Powers and Ranges for Protons and Alpha
188Particles,
189ICRU Report 49, 1993.
190\end{thebibliography}
191
192\end{latexonly}
193
194\begin{htmlonly}
195
196\subsection{Bibliography}
197
198\begin{enumerate}
199\item Particle Data Group. Rev. of Particle Properties.
200   Eur. Phys. J. C15. (2000) 1. http://pdg.lbl.gov 
201\item ICRU Report No. 37 (1984)
202\item R.M.Sternheimer. Phys.Rev. B3 (1971) 3681.
203\item W.H. Barkas. Technical Report 10292,UCRL, August 1962.
204\item ICRU (A.~Allisy et al),
205Stopping Powers and Ranges for Protons and Alpha
206Particles, ICRU Report 49, 1993.
207\end{enumerate}
208
209\end{htmlonly}
Note: See TracBrowser for help on using the repository browser.