source: trunk/documents/UserDoc/UsersGuides/PhysicsReferenceManual/latex/electromagnetic/muons/pair.tex

Last change on this file was 1208, checked in by garnier, 15 years ago

CVS update

File size: 12.9 KB
Line 
1
2\section{Positron - Electron Pair Production by Muons}
3
4Direct electron pair production is one of the most important muon interaction
5processes.  At TeV muon energies, the pair production cross section exceeds
6those of other muon interaction processes over a range of energy transfers
7between 100 MeV and 0.1$E_{\mu}$.  The average energy loss for pair
8production increases linearly with muon energy, and in the TeV region this
9process contributes more than half the total energy loss rate.
10
11To adequately describe the number of pairs produced, the average energy loss
12and the stochastic energy loss distribution, the differential cross section
13behavior over an energy transfer range of
145~MeV~$\leq \epsilon \leq $~0.1~$\cdot E_{ \mu }$ must be accurately
15reproduced.  This is is because the main contribution to the total cross
16section is given by transferred energies
175 MeV $\leq $ $\epsilon $ $\leq $ 0.01 $\cdot E_{ \mu }$, and because the
18contribution to the average muon energy loss is determined mostly in the
19region
20$0.001 \cdot E_{ \mu } \leq \epsilon \leq $ 0.1 $\cdot E_{\mu }$ .
21
22For a theoretical description of the cross section, the formulae of
23Ref.~\cite{pair.koko69} are used, along with a correction for finite nuclear
24size \cite{pair.koko71}.  To take into account electron pair production in
25the field of atomic electrons, the inelastic atomic form factor contribution
26of Ref. \cite{pair.keln97} is also applied.
27
28
29\subsection{Differential Cross Section}
30
31\subsubsection{Definitions and Applicability}
32
33In the following discussion, these definitions are used:
34
35\begin{itemize}
36\item $m$ and $\mu$ are the electron and muon masses, respectively
37\item $E\equiv E_{\mu}$ is the total muon energy, $E = T +\mu $
38\item $Z$ and $A$ are the atomic number and weight of the material
39\item $\epsilon$ is the total pair energy or, approximately, the muon energy
40  loss $(E-E')$
41\item $v = \epsilon/E$
42\item $e = 2.718\dots$
43\item $A^{\star} = 183$.
44\end{itemize}
45
46\noindent
47The formula for the differential cross section applies when:
48
49\begin{itemize}
50\item $E_{\mu} \gg  \mu$ ($E \geq$ 2 -- 5 GeV) and
51$E_{\mu} \leq 10^{15}$ -- $10^{17} $ eV.  If muon energies exceed this limit,
52the LPM (Landau Pomeranchuk Migdal) effect may become important, depending on
53the material
54
55\item the muon energy transfer $\epsilon$ lies between
56$\epsilon_{\rm min} = 4\,m$ and $\epsilon_{\rm max} = E_{\mu}- \frac{3 \sqrt{e}}{4}\,\mu \,Z^{1/3}$, although the formal lower limit is
57$\epsilon\gg 2\, m$, and the formal upper limit requires $E'_{\mu }\gg\mu$.
58
59\item $Z \leq$ 40 -- 50.  For higher $Z$, the Coulomb correction is important
60but has not been sufficiently studied theoretically.
61\end{itemize}
62                       
63\subsubsection{Formulae}
64
65The differential cross section for electron pair production by muons
66$\sigma(Z,A,E,\epsilon)$ can be written as :
67\begin{equation}
68\label{mupair.a} 
69\sigma(Z,A,E,\epsilon)=\frac{4}{3\pi}\,\frac{Z(Z+\zeta )}
70{A}\, N_{A}\,(\alpha r_{0})^{2}\, \frac{1-v}{\epsilon}
71\int_{0}^{\rho_{\rm max}}G(Z,E,v,\rho)\,d\rho ,
72\end{equation}
73
74\noindent 
75where
76$$G(Z,E,v,\rho ) = \Phi_e + (m/\mu)^2 \Phi_{\mu} , $$
77$$\Phi_{e,\mu} = B_{e,\mu} L'_{e,\mu} $$ and
78$$\Phi_{e,\mu} = 0 \quad {\rm whenever} \quad \Phi_{e,\mu} < 0 . $$
79
80\noindent 
81$B_{e}$ and $B_{\mu}$ do not depend on $Z,A$, and are given by
82
83$$B_{e}=[(2+\rho^{2})(1+\beta)+\xi(3+\rho^{2})]
84\ln\left(1+\frac{1}{\xi}\right)+\frac{1-\rho^{2}-\beta}{1+\xi}-(3+\rho^{2}) ; $$
85$$B_{e}\approx
86\frac{1}{2\xi}\,[(3-\rho^{2})+2\beta(1+\rho^{2})]\quad {\rm 
87for}\quad\xi\geq 10^{3};$$
88
89$$B_{\mu}=\left[(1+\rho^{2})
90\left(1+\frac{3\beta}{2}
91\right)-\frac{1}{\xi}(1+2\beta)
92(1-\rho^{2})\right]\ln(1+\xi )
93$$
94$$
95+\frac{\xi(1-\rho^{2}-\beta)}{1+\xi}+
96(1+2\beta)(1-\rho^{2});$$
97$$B_{\mu}\approx\frac{\xi}{2}\,[(5-\rho^{2})+\beta(3+\rho^{2})]\quad{\rm 
98for}\quad\xi\leq10^{-3}
99;$$
100
101\noindent 
102Also,
103% $B_{e},\:B_{\mu}$ do not depend on $\,Z,\:A$.
104
105$$\xi=\frac{\mu^{2} v^{2}}{4m^{2}}\, \frac{(1-\rho^{2})}{(1-v)};\quad
106\beta=\frac{v^{2}}{2(1-v)};$$
107
108$$L'_{e}=\ln\frac{A^{*}Z^{-1/3}\sqrt{(1+\xi)(1+Y_{e})}}
109{1+\displaystyle\frac{2m\sqrt{e}A^{*}Z^{-1/3}(1+\xi)(1+Y_{e})}{Ev(1-\rho^{2})}}
110$$
111$$
112-\frac{1}{2}\ln\left[1+\left(\frac{3mZ^{1/3}}{2\mu}\right)^{2}(1+\xi)(1+Y_{e})\right];
113$$
114
115$$L'_{\mu}=\ln\frac{(\mu/m)A^{*}Z^{-1/3}\sqrt{(1+1/\xi)(1+Y_{\mu})}}
116{1+\displaystyle\frac{2m\sqrt{e}A^{*}Z^{-1/3}(1+\xi)(1+Y_{\mu})}{Ev(1-\rho^{2})}}
117$$
118$$
119-\ln\left[\frac{3}{2}\,Z^{1/3}\sqrt{(1+1/\xi)(1+Y_{\mu})}\right].
120$$
121%
122For faster computing, the expressions for $L'_{e,\mu }$ are
123further algebraically transformed.  The functions $L'_{e,\mu }$ include the
124nuclear size correction \cite{pair.koko71} in comparison with parameterization
125\cite{pair.koko69} :
126%
127$$Y_{e}=\frac{5-\rho^{2}+4\,\beta\,(1+\rho^{2})}
128{2(1+3\beta)\ln(3+{1}/{\xi})-\rho^{2}-2\beta(2-\rho^{2})} ;$$
129
130$$Y_{\mu}=\frac{4+\rho^{2}+3\,\beta\,(1+\rho^{2})}
131{(1+\rho^{2})(\frac{3}{2}+2\beta)\ln(3+\xi)+1-\frac{3}{2}\,\rho^{2}};$$
132%$Y_{e,\mu}$~--~ approximations (\cite{pair.koko69}); there is
133%a possibility that they will be improved , as well as corrections (second
134% terms) in $L_{e,\mu}$.
135%
136$$\rho_{\rm max}=[1-6\mu^{2}/E^{2}(1-v)]\sqrt{1-4m/Ev}.$$
137
138\subsubsection{Comment on the Calculation of the Integral $\int\!d\rho$ in
139Eq.~\ref{mupair.a}}
140 
141The integral $\int\limits_{0}^{\rho_{\max}}G(Z,E,v,\rho)~d\rho$ is computed
142with the substitutions:
143\begin{eqnarray*}
144t&=& \ln(1-\rho),\\
1451 - \rho &= &\exp(t),\\
1461 + \rho& =& 2 - \exp(t),\\
1471 - \rho^{2} &=&e^{t}\,(2-e^{t}).
148\end{eqnarray*}
149
150\noindent 
151After that,
152\begin{equation}
153\label{mupair.b}
154\int_{0}^{\rho_{\rm max}}G(Z,E,v,\rho)~d\rho =
155\int_{t_{\rm min}}^{0}G(Z,E,v,\rho )\,e^{t}\,dt ,
156\end{equation}
157
158\noindent
159where
160
161$$t_{\rm
162min}=\ln\frac{\displaystyle\frac{4m}{\epsilon}+\frac{12\mu^{2}}{EE'}\left(1-\frac{4m}
163{\epsilon}\right)}
164{\displaystyle 1+\left(1-\frac{6\mu^{2}}{EE'}\right)\sqrt{1-\frac{4m}{\epsilon}}}.
165$$
166
167To compute the integral of Eq.~\ref{mupair.b} with an accuracy better than
1680.5\%, Gaussian quadrature with $N=8$ points is sufficient.
169
170The function $\zeta(E,Z)$ in Eq.~\ref{mupair.a} serves to take into account
171the process on atomic electrons (inelastic atomic form factor contribution). 
172To treat the energy loss balance correctly, the following approximation,
173which is an algebraic transformation of the expression in
174Ref.~\cite{pair.keln97}, is used:
175
176$$\zeta(E,Z)=\frac{\displaystyle 0.073\ln\frac{E/\mu}{
1771+\gamma_{1}Z^{2/3}E/\mu}
178-0.26}
179{\displaystyle 0.058\ln\frac{E/\mu}{1+\gamma_{2}Z^{1/3}E/\mu}
180-0.14}; $$
181$$\zeta(E,Z)=0\quad\mbox{if the numerator is negative.}$$
182
183\noindent
184For E $\leq 35\,\mu, ~ \zeta(E,Z)=0$.  Also
185$\gamma_{1}= 1.95\cdot 10^{-5} $ and $\gamma_{2}= 5.30\cdot 10^{-5} $.
186
187The above formulae make use of the Thomas-Fermi model which is not good
188enough for light elements.  For hydrogen ($Z = 1$) the following parameters
189must be changed: \\
190$A^{*}=183 ~\Rightarrow ~202.4;$\\
191$\gamma_{1}= 1.95\cdot 10^{-5}  ~\Rightarrow ~ 4.4\cdot 10^{-5};$\\
192$\gamma_{2}= 5.30\cdot 10^{-5}  ~\Rightarrow  ~4.8\cdot 10^{-5}.$\\
193
194\subsection{Total Cross Section and Restricted Energy Loss}
195
196If the user's cut for the energy transfer $\epsilon_{\rm cut}$ is
197greater than $\epsilon_{\min}$, the process is represented by
198continuous restricted energy loss for interactions with
199$\epsilon\le\epsilon_{\rm cut}$, and discrete collisions with
200$\epsilon>\epsilon_{\rm cut}$. Respective values of the total cross
201section and restricted energy loss rate are defined as:
202$$
203\sigma_{\rm tot}=\int_{\epsilon_{\rm cut}}^{\epsilon_{\max}}
204\sigma(E,\epsilon)\,d\epsilon;\quad
205(dE/dx)_{\rm restr}=\int_{\epsilon_{\min}}^{\epsilon_{\rm cut}}
206\epsilon\,\sigma(E,\epsilon)\,d\epsilon.
207$$ 
208For faster computing, $\ln\epsilon$ substitution and Gaussian quadratures are
209used.
210
211\subsection{Sampling of Positron - Electron Pair Production}
212
213The e$^+$e$^-$ pair energy $\epsilon_P$, is found numerically by solving the
214equation
215\begin{equation}
216\label{mupair.c}
217 P = \int_{\epsilon_P}^{\epsilon_{\rm max}} \sigma (Z,A,T,\epsilon) d\epsilon
218 \quad /  \int_{cut}^{\epsilon_{\rm max}} \sigma (Z,A,T,\epsilon) d\epsilon
219\end{equation}
220or
221\begin{equation}
222\label{mupair.d}
223  1 - P = \int_{cut}^{\epsilon_P} \sigma (Z,A,T,\epsilon) d\epsilon 
224 \quad /  \int_{cut}^{\epsilon_{\rm max}} \sigma (Z,A,T,\epsilon) d\epsilon
225\end{equation}
226
227To reach high sampling speed, solutions of Eqs.~\ref{mupair.c}, \ref{mupair.d}
228are tabulated at initialization time.  Two 3-dimensional tables (referred to
229here as A and B) of $\epsilon_{P}(P,T,Z)$ are created, and then interpolation
230is used to sample $\epsilon_P$.
231
232\noindent
233The number and spacing of entries in the table are chosen as follows:
234\begin{itemize}
235\item a constant increment in $\ln T$ is chosen such that there are four
236points per decade in the range $T_{\rm min}- T_{\rm max}$.  The default range
237of muon kinetic energies in Geant4 is $T=1\:{\rm GeV}-1000\:{\rm PeV}$.
238
239\item a constant increment in $\ln Z$ is chosen.  The shape of the sampling
240distribution does depend on $Z$, but very weakly, so that eight points in the
241range $1\leq Z\leq 128$ are sufficient.  There is practically no dependence
242on the atomic weight $A$.
243
244\item for probabilities $P \leq 0.5$, Eq.~\ref{mupair.c} is used and Table~A
245is computed with a constant increment in $\ln P$ in the range
246$10^{-7}\leq P \leq 0.5$.  The number of points in $\ln P$ for Table~A is
247about 100.
248
249\item for $P \geq 0.5$, Eq.~\ref{mupair.d} is used and Table~B is computed
250with a constant increment in $\ln(1-P)$ in the range
251$10^{-5} \leq (1-P) \leq 0.5$.  In this case 50 points are sufficient.
252\end{itemize}
253
254\noindent 
255The values of $\ln (\epsilon_{P}-cut$) are stored in both Table~A and Table~B.
256
257
258To create the ``probability tables" for each $(T, Z)$ pair, the following
259procedure is used:
260
261\begin{itemize}
262\item a temporary table of $\sim$ 2000 values of
263$\epsilon \cdot \sigma(Z,A,T,\epsilon)$ is constructed with a constant
264increment ($\sim$ 0.02) in $\ln \epsilon$ in the range
265$(cut, \epsilon_{\max})$$\epsilon$ is taken in the middle of the
266corresponding bin in $\ln \epsilon$.
267
268\item the accumulated cross sections
269$$\sigma_{1}=\int_{\ln\epsilon}^{\ln\epsilon_{\max}}
270 \epsilon \, \sigma (Z,A,T,\epsilon)\, d (\ln\epsilon)  $$
271and
272 $$\sigma_{2}=\int_{\ln(cut)}^{\ln\epsilon}
273 \epsilon \, \sigma (Z,A,T,\epsilon)\, d (\ln\epsilon )  $$
274
275are calculated by summing the temporary table over the values above
276$\ln \epsilon$ (for $\sigma_1$) and below $\ln \epsilon$ (for $\sigma_2$)
277and then normalizing to obtain the accumulated probability functions.
278
279\item finally, values of $\ln(\epsilon_{P} - cut $) for corresponding values
280of $\ln P$ and $\ln (1-P)$ are calculated by linear interpolation of the
281above accumulated probabilities to form Tables A and B.  The monotonic
282behavior of the accumulated cross sections is very useful in speeding up
283the interpolation procedure.
284
285\end{itemize}
286
287The random transferred energy corresponding to a probability $P$, is then
288found by linear interpolation in $\ln Z$ and $\ln T$, and a cubic
289interpolation in $\ln P$ for Table A or in $\ln (1-P)$ for Table B.
290For $P \leq 10^{-7}$ and $(1-P) \leq 10^{-5}$, linear extrapolation using
291the entries at the edges of the tables may be safely used.  Electron pair
292energy is related to the auxiliary variable
293$x = \ln (\epsilon_{P} - cut)$ found by the trivial interpolation
294$\epsilon_{P} = e^{x} + cut$.
295
296Similar to muon bremsstrahlung (section \ref{secmubrem}), this sampling
297algorithm does not re-initialize the tables for user cuts greater than
298$cut_{min}$.  Instead, the probability variable is redefined as
299$$ P' = P \sigma_{\rm tot}(cut_{user}) / \sigma_{\rm tot}(cut_{min}),$$
300and $P'$ is used for sampling.
301
302In the simulation of the final state, the muon deflection angle (which is
303of the order of $m/E$) is neglected. The procedure for sampling the energy
304partition between $e^+$ and $e^-$ and their emission angles is similar to
305that used for the $\gamma \to e^+\,e^-$ conversion.
306
307\subsection{Status of this document}
308
30912.10.98 created by R.Kokoulin and A.Rybin\\
31018.05.00 edited by S.Kelner, R.Kokoulin, and A.Rybin\\
31127.01.03 re-written by D.H. Wright
312
313\begin{latexonly}
314
315\begin{thebibliography}{99}
316 
317\bibitem{pair.koko69} R.P.Kokoulin and A.A.Petrukhin,
318               Proc. 11th Intern. Conf. on Cosmic Rays, Budapest, 1969
319               [Acta Phys. Acad. Sci. Hung.,{\bf  29, Suppl.4},
320               p.277, 1970].
321
322\bibitem{pair.koko71} R.P.Kokoulin and A.A.Petrukhin,
323               Proc. 12th Int. Conf. on Cosmic Rays, Hobart, 1971,
324               {\bf vol.6}, p.2436.
325
326\bibitem{pair.keln97} S.R.Kelner, Phys. Atomic Nuclei,
327  {\bf 61} (1998) 448.
328
329\end{thebibliography}
330
331\end{latexonly}
332
333\begin{htmlonly}
334
335\subsection{Bibliography}
336 
337\begin{enumerate}
338\item R.P.Kokoulin and A.A.Petrukhin,
339      Proc. 11th Intern. Conf. on Cosmic Rays, Budapest, 1969
340      [Acta Phys. Acad. Sci. Hung.,{\bf  29, Suppl.4}, p.277, 1970].
341
342\item R.P.Kokoulin and A.A.Petrukhin,
343      Proc. 12th Int. Conf. on Cosmic Rays, Hobart, 1971, {\bf vol.6}, p.2436.
344
345\item S.R.Kelner, Phys. Atomic Nuclei, {\bf 61} (1998) 448.
346\end{enumerate}
347
348\end{htmlonly}
Note: See TracBrowser for help on using the repository browser.