source: trunk/documents/UserDoc/UsersGuides/PhysicsReferenceManual/latex/electromagnetic/standard/AnnihiToMuPair.tex @ 1292

Last change on this file since 1292 was 1208, checked in by garnier, 15 years ago

CVS update

File size: 6.5 KB
Line 
1\section{Positron - Electron Annihilation into Muon - Anti-muon}
2
3The class {\tt G4AnnihiToMuPair} simulates the electromagnetic production
4of muon pairs by the annihilation of high-energy positrons with atomic
5electrons.  Details of the implementation are given below and can also be
6found in Ref. \cite{AnnihiToMuPair}.
7
8\subsection{Total Cross Section}
9
10The annihilation of positrons and target electrons producing muon pairs in
11the final state (${\rm e}^+{\rm e}^- \to \mu^+\mu^-$) may give an
12appreciable contribution to the total number of muons produced in
13high-energy electromagnetic cascades.  The threshold positron energy in the
14laboratory system for this process with the target electron at rest is
15\begin{equation}\label{e0}
16E_{\rm th}=2m_\mu^2/m_e-m_e\approx 43.69\:{\rm GeV}\,,
17\end{equation}
18where $m_\mu$ and $m_e$ are the muon and electron masses, respectively.
19The total cross section for the process on the electron is
20\begin{equation}\label{e1}
21\sigma=\frac{\pi\,r_\mu^2} 3\, \xi\left(1+\frac\xi2\right)
22\sqrt{1-\xi}\,,
23\end{equation}
24where $r_\mu=r_e\, m_e/m_\mu$ is the classical muon radius,
25$\xi=E_{\rm th}/E$, and $E$ is the total positron energy in the laboratory
26frame.  In Eq.\,\ref{e1}, approximations are made that utilize the
27inequality $m_e^2\ll m_\mu^2$.
28
29\begin{figure}[htbp]
30\center
31\includegraphics[scale=0.8]{electromagnetic/standard/AnnihiToMuPair1.eps}
32\caption{Total cross section for the process
33${\rm e}^+{\rm e}^- \rightarrow \mu^+\mu^-$ as a function of the positron
34energy $E$ in the laboratory system.}
35\label{plot:AnnihiToMuPair1}
36\end{figure}
37\noindent
38The cross section as a function of the positron energy $E$ is shown in
39Fig.\ref{plot:AnnihiToMuPair1}.  It has a maximum at
40$E = 1.396 \, E_{\rm th}$ and the value at the maximum is
41$\sigma_{\max}=0.5426\,r_\mu^2 = 1.008\,\mu{\rm b}$.
42
43\subsection{Sampling of Energies and Angles}
44
45It is convenient to simulate the muon kinematic parameters in the
46center-of-mass (c.m.) system, and then to convert into the laboratory
47frame.
48
49The energies of all particles are the same in the c.m. frame and equal to
50\begin{equation}\label{e2}
51E_{\rm cm}=\sqrt{\frac12\,m_e(E+m_e)}\,.
52\end{equation}
53The muon momenta in the c.m. frame are
54$P_{\rm cm}=\sqrt{E_{\rm cm}^2-m_\mu^2}$.  In what follows, let the cosine
55of the angle between the c.m. momenta of the $\mu^+$ and $e^+$ be denoted as
56$x=\cos\theta_{\rm cm}$ .
57
58From the differential cross section it is easy to derive that, apart from
59normalization, the distribution in $x$ is described by
60\begin{equation}\label{e3}
61f(x)\,d x=(1+\xi+x^2\,(1-\xi))\,d x\,, \quad -1\le x \le1\,.
62\end{equation}
63The value of this function is contained in the interval
64$(1+\xi)\le f(x)\le 2$ and the generation of $x$ is straightforward using
65the rejection technique.  Fig.\,\ref{plot:AnnihiToMuPair2} shows both
66generated and analytic distributions.
67\begin{figure}[htpb]
68\center
69\includegraphics[scale=.8]{electromagnetic/standard/AnnihiToMuPair2.eps}
70\caption{Generated histograms with $10^6$ entries each and the expected
71$\cos\theta_{\rm cm}$ distributions (dashed lines) at $E=50$ and 500\,GeV
72positron energy in the lab frame.  The asymptotic
73$1+\cos\theta_{\rm cm}^2$ distribution valid for $E \rightarrow \infty$ is
74shown as dotted line.}
75\label{plot:AnnihiToMuPair2}
76\end{figure}
77
78The transverse momenta of the $\mu^+$ and $\mu^-$ particles are the same,
79both in the c.m. and the lab frame, and their absolute values are equal to
80\begin{equation}\label{perp}
81P_\perp=P_{\rm cm} \, \sin\theta_{\rm cm}=P_{\rm cm} \, \sqrt{1-x^2}\,.
82\end{equation}
83The energies and longitudinal components of the muon momenta in the
84lab system may be obtained by means of a Lorentz transformation.  The
85velocity and Lorentz factor of the center-of-mass in the lab frame may be
86written as
87\begin{equation}\label{e5}
88\beta=\sqrt{\frac{E-m_e}{E+m_e}}\,,\quad \gamma\equiv\frac1{\sqrt{1-\beta^2}}=
89\sqrt{\frac{E+m_e}{2 m_e}} = \frac{E_{\rm cm}}{m_e}\,.
90\end{equation}
91The laboratory energies and longitudinal components of the momenta of the
92positive and negative muons may then be obtained:
93\begin{eqnarray}
94\label{e6}
95E_+&=&\gamma\,(E_{\rm cm}+x \, \beta \,P_{\rm cm})\,,\quad
96P_{+_\parallel}=\gamma\,(\beta E_{\rm cm} + x \, P_{\rm cm})\,, \\
97\label{e7}
98E_-&=&\gamma\,(E_{\rm cm}-x \, \beta \,P_{\rm cm})\,,\quad
99P_{-_\parallel}=\gamma\,(\beta E_{\rm cm} -x \, P_{\rm cm})\,.
100\end{eqnarray}
101Finally, for the vectors of the muon momenta one obtains:
102\begin{eqnarray}
103\label{e8}
104{\bf P}_+&=&(+P_\perp\cos\varphi ,+P_\perp \sin\varphi,P_{+_\parallel})\,,\\
105\label{e9}
106{\bf P}_-&=&(-P_\perp\cos\varphi,
107-P_\perp\sin\varphi,P_{-_\parallel})\,,
108\end{eqnarray}
109where $\varphi$ is a random azimuthal angle chosen between 0 and $2\,\pi$.
110The $z$-axis is directed along the momentum of the initial positron in the
111lab frame.
112
113The maximum and minimum energies of the muons are given by
114\begin{equation}\label{e10}
115E_{\max}\approx\frac12\,E\left(1+\sqrt{1-\xi}\right)\,,
116\end{equation}
117\begin{equation}\label{e11}
118E_{\min}\approx\frac12\,E\left(1-\sqrt{1-\xi}\right)=
119\frac{\displaystyle
120E_{\rm th}}{\displaystyle 2\left(1+\sqrt{1-\xi} \right)}\,.
121\end{equation}
122The fly-out polar angles of the muons are approximately
123\begin{equation}\label{e12}
124\theta_+\approx P_{{}\perp}/P_{+_\parallel},\quad \theta_-\approx
125P_{{}\perp}/P_{-_\parallel}\,;
126\end{equation}
127the maximal angle $\displaystyle\theta_{\max}\approx\frac{m_e}{m_\mu}\,
128\sqrt{1-\xi}\,$ is always small compared to 1.
129\medskip
130
131\subsection*{Validity}
132
133The process described is assumed to be purely electromagnetic.  It is
134based on virtual $\gamma$ exchange, and the $Z$-boson exchange and
135$\gamma - Z$ interference processes are neglected.  The $Z$-pole corresponds
136to a positron energy of $E = M_Z^2 / 2 m_e = 8136\,{\rm TeV}$.
137The validity of the current implementation is therefore restricted to
138initial positron energies of less than about 1000\,TeV.
139
140\subsection{Status of this document}
14105.02.03 created by H.Burkhardt \\
14214.04.03 minor re-wording by D.H. Wright
143
144\begin{latexonly}
145
146\begin{thebibliography}{99}
147
148\bibitem{AnnihiToMuPair}
149H.~Burkhardt, S.~Kelner, and R.~Kokoulin, ``Production of muon pairs in
150annihilation of high-energy positrons with resting electrons,''
151CERN-AB-2003-002 (ABP) and CLIC Note 554, January 2003.
152
153\end{thebibliography}
154
155\end{latexonly}
156
157\begin{htmlonly}
158
159\subsection{Bibliography}
160
161\begin{enumerate}
162
163\item H.~Burkhardt, S.~Kelner, and R.~Kokoulin, ``Production of muon pairs in
164annihilation of high-energy positrons with resting electrons,''
165CERN-AB-2003-002 (ABP) and CLIC Note 554, January 2003.
166
167\end{enumerate}
168
169\end{htmlonly}
Note: See TracBrowser for help on using the repository browser.