source: trunk/documents/UserDoc/UsersGuides/PhysicsReferenceManual/latex/electromagnetic/standard/hion.tex @ 1292

Last change on this file since 1292 was 1208, checked in by garnier, 15 years ago

CVS update

File size: 9.1 KB
Line 
1\section[Ionization]{Ionization}
2
3\subsection{Method}
4 
5 The class $G4hIonisation$ provides the continuous energy loss due to
6ionization and simulates the 'discrete' part of the ionization, that is,
7delta rays produced by charged hadrons.  The class $G4ionIonisation$ is
8intended for the simulation of energy loss by ions and the approach described
9in Section \ref{en_loss} is used.  The value of the maximum energy
10transferable to a free electron $T_{max}$ is given by the following relation:
11\begin{equation}
12\label{hion.c}
13T_{max} =\frac{2mc^2(\gamma^2 -1)}{1+2\gamma (m/M)+(m/M)^2 },
14\end{equation}
15where $m$ is the electron mass and $M$ is the mass of the incident particle.
16The method of calculation of the continuous energy loss and the total
17cross-section are explained below.
18
19\subsection{Continuous Energy Loss}
20
21The integration of \ref{comion.a} leads to the Bethe-Bloch restricted energy
22loss formula \cite{hion.pdg} :
23\begin{equation}
24\label{hion.d}
25\left. \frac{dE}{dx} \right]_{T < T_{cut}} =
26       2 \pi r_e^2 mc^2 n_{el} \frac{(z_p)^2}{\beta^2}
27       \left [\ln \left(\frac{2mc^2 \beta^2 \gamma^2 T_{up}} {I^2} \right)
28       - \beta^2 \left( 1 + \frac{T_{up}}{T_{max}} \right)
29       - \delta - \frac{2C_e}{Z} \right ]
30\end{equation}
31 where
32\[
33\begin{array}{ll}
34r_e          & \mbox{classical electron radius:}
35                  \quad e^2/(4 \pi \epsilon_0 mc^2 )        \\
36mc^2         & \mbox{mass-energy of the electron}           \\
37n_{el}       & \mbox{electrons density in the material}     \\
38I            & \mbox{mean excitation energy in the material}\\
39\gamma       & \mbox{$E/mc^2$}                              \\
40\beta^2      & 1-(1/\gamma^2)                               \\
41T_{up}       & \min(T_{cut},T_{max})                        \\
42\delta       & \mbox{density effect function}               \\
43C_e          & \mbox{shell correction function}
44\end{array}
45\]
46In a single element the electron density is
47$$ n_{el} = Z \: n_{at} = Z \: \frac{\mathcal{N}_{av} \rho}{A} $$
48($\mathcal{N}_{av}$: Avogadro number, $\rho$: density of the material,
49 $A$: mass of a mole).  In a compound material
50$$ 
51n_{el} = \sum_i Z_i \: n_{ati}
52       = \sum_i Z_i \: \frac{\mathcal{N}_{av} w_i \rho}{A_i} .
53$$
54$w_i$ is the proportion by mass of the $i^{th}$ element, with molar mass $A_i$.
55
56
57The mean excitation energy $I$ for all elements is tabulated according to
58the ICRU recommended values \cite{hion.icru1}.
59
60\subsubsection{Density Correction} 
61
62$\delta$ is a correction term which takes into account the reduction in energy
63loss due to the so-called {\it density effect}.  This becomes important at
64high energies because media have a tendency to become polarized as the
65incident particle velocity increases.  As a consequence, the atoms in a
66medium can no longer be considered as isolated.  To correct for this effect
67the formulation of Sternheimer~\cite{hion.sternheimer} is used:
68\input{electromagnetic/utils/densityeffect}
69
70\subsubsection{Shell Correction} 
71
72$2C_e/Z$ is the so-called {\it shell correction term} which accounts for the
73fact that, at low energies for light elements and at all energies for heavy
74ones, the probability of collision with the electrons of the inner atomic
75shells (K, L, etc.) is negligible.  The semi-empirical formula used
76in {\sc Geant4}, applicable to all materials, is due to
77Barkas \cite{hion.barkas}:
78\begin{equation}
79\label{hion.dd}
80C_e(I, \beta\gamma) = \frac{a(I)}{(\beta\gamma)^2}
81                     +\frac{b(I)}{(\beta\gamma)^4}
82                     +\frac{c(I)}{(\beta\gamma)^6} .
83\end{equation}
84The functions a(I), b(I) and c(I) can be found in the source code.  This
85formula breaks down at low energies, and is valid only when
86$\beta\gamma > 0.13$ ($T > 7.9$ MeV for a proton).  For $\beta\gamma \leq
870.13$ the shell correction term is calculated as:
88\begin{equation}
89\label{hion.ddd}
90\left . C_{e}(I,\beta\gamma) \rule{0mm}{5mm} \right |_{\beta\gamma \leq 0.13}
91 = C_{e}(I,\beta\gamma=0.13)\frac{\ln(T/T_{2l})}{\ln(7.9 \: \rm MeV/T_{2l})},
92\end{equation}
93i.e. the correction is switched off logarithmically from $T=7.9$ MeV
94to $T=T_{2l}=2$ MeV.
95
96\subsubsection{Parameterization} 
97
98The mean energy loss can be described by the Bethe-Bloch formula
99(\ref{muion1}) only if the projectile velocity is larger than that of the
100orbital electrons.  In the low-energy region this is not the case, and the
101parameterization from the ICRU'49 report \cite{hion.ICRU49} is used in the
102$G4BraggModel$ class. The Bethe-Bloch model is applied for higher kinetic
103energies of incident particles
104\begin{equation}
105\label{muion.lowen1}
106T > 2 * M/M_{proton} MeV,
107\end{equation}
108where $M$ is the particle mass.  The details of the low energy
109parameterization are described in Section \ref{le_had_ion}.
110
111
112\subsection{Total Cross Section per Atom and Mean Free Path}
113
114For $T \gg I $ the differential cross section can be written as
115\begin{equation}
116\label{hion.i}
117\frac{d\sigma }{dT} = 2\pi r_e^2 mc^2 Z \frac{z_p^2}{\beta^2} \frac{1}{T^2}
118     \left[ 1 - \beta^2 \frac{T}{T_{max}} + \frac{T^2}{2E^2} \right] 
119\end{equation}
120\cite{hion.pdg}.  In {\sc Geant4} $T_{cut} \geq 1$ keV.  Integrating from
121$T_{cut}$ to $T_{max}$ gives the total cross section per atom :
122\begin{eqnarray}
123\label{hion.j}
124\sigma (Z,E,T_{cut}) & = & \frac {2\pi r_e^2 Z z_p^2}{\beta^2} mc^2 \times 
125  \\ & &     \left[ \left( \frac{1}{T_{cut}} - \frac{1}{T_{max}} \right)
126                   - \frac{\beta^2}{T_{max}} \ln \frac{T_{max}}{T_{cut}}
127                   + \frac{T_{max} - T_{cut}}{2E^2} 
128             \right\nonumber   
129\end{eqnarray}
130The last term is for spin $1/2$ only.  In a given material the mean free path
131is:
132\begin{equation}
133\begin{array}{lll} 
134\lambda = (n_{at} \cdot \sigma)^{-1} & or &
135\lambda = \left( \sum_i n_{ati} \cdot \sigma_i \right)^{-1}
136\end{array}
137\end{equation}
138The mean free path is tabulated during initialization as a function of the
139material and of the energy for all kinds of charged particles.
140
141\subsection{Simulating Delta-ray Production}
142
143A short overview of the sampling method is given in Chapter \ref{secmessel}.
144Apart from the normalization, the cross section \ref{hion.i} can be
145factorized :
146\begin{eqnarray}
147\frac{d\sigma}{dT}=f(T) g(T) &with& T \in [T_{cut}, \ T_{max}]
148\end{eqnarray}
149where
150\begin{eqnarray}
151f(T) &=& \left(\frac{1}{T_{cut}} - \frac{1}{T_{max}} \right) \frac{1}{T^2} \\
152g(T) &=& 1 - \beta^2 \frac{T}{T_{max}} + \frac{T^2}{2E^2} .
153\end{eqnarray}
154The last term in $g(T)$ is for spin $1/2$ only.  The energy $T$ is chosen by
155\begin{enumerate}
156\item sampling $T$ from $f(T)$
157\item calculating the rejection function $g(T)$ and accepting the sampled
158$T$ with a probability of $g(T)$.
159\end{enumerate}
160After the successful sampling of the energy, the direction
161of the scattered electron is generated with respect to the direction of the
162incident particle. The azimuthal angle $\phi$ is generated isotropically.
163The polar angle $\theta$ is calculated from energy-momentum conservation.
164This information is used to calculate the energy and momentum of both
165scattered particles and to transform them into the {\em global} coordinate
166system.
167
168\subsubsection{Ion Effective Charge}
169
170As ions penetrate matter they exchange electrons with the medium. In the
171implementation of $G4ionIonisation$ the effective charge approach is
172used \cite{hion.Ziegler85}.
173A state of equilibrium between the ion and the medium is assumed, so that
174the ion's effective charge can be calculated as a function of its kinetic
175energy in a given material.  This is done according to the approximation
176described in Section \ref{le_had_ion}. Before and after each step the dynamic
177charge of the ion is recalculated and saved in $G4DynamicParticle$, where
178it can be used not only for energy loss calculations but also for the
179sampling of transportation in an electromagnetic field.
180
181
182\subsection{Status of this document}
183  09.10.98  created by L. Urb\'an. \\
184  14.12.01  revised by M.Maire \\
185  29.11.02  re-worded by D.H. Wright \\
186  01.12.03 revised by V. Ivanchenko     \\
187
188\begin{latexonly}
189
190\begin{thebibliography}{99}
191
192\bibitem{hion.pdg}
193  Particle Data Group. Rev. of Particle Properties.
194   Eur. Phys. J. C15. (2000) 1. http://pdg.lbl.gov 
195\bibitem{hion.icru1} 
196  ICRU Report No. 37 (1984)
197\bibitem{hion.sternheimer}
198  R.M.Sternheimer. Phys.Rev. B3 (1971) 3681.
199\bibitem{hion.barkas}
200  W. H. Barkas. Technical Report 10292,UCRL, August 1962.
201\bibitem{hion.ICRU49}ICRU (A.~Allisy et al),
202Stopping Powers and Ranges for Protons and Alpha
203Particles,
204ICRU Report 49, 1993.
205\bibitem{hion.Ziegler85}J.F.~Ziegler, J.P.~Biersack, U
206.~Littmark, The Stopping
207and Ranges of Ions in Solids. Vol.1, Pergamon Press, 1985.
208\end{thebibliography}
209
210\end{latexonly}
211
212\begin{htmlonly}
213
214\subsection{Bibliography}
215
216\begin{enumerate}
217\item Particle Data Group. Rev. of Particle Properties.
218   Eur. Phys. J. C15. (2000) 1. http://pdg.lbl.gov 
219\item ICRU Report No. 37 (1984)
220\item R.M.Sternheimer. Phys.Rev. B3 (1971) 3681.
221\item W.H. Barkas. Technical Report 10292,UCRL, August 1962.
222\item ICRU (A.~Allisy et al),
223Stopping Powers and Ranges for Protons and Alpha Particles,
224ICRU Report 49, 1993.
225\item J.F.~Ziegler, J.P.~Biersack, U.~Littmark, The Stopping
226and Ranges of Ions in Solids. Vol.1, Pergamon Press, 1985.
227\end{enumerate}
228
229\end{htmlonly}
230
231
Note: See TracBrowser for help on using the repository browser.