| 1 | \section[Ionization]{Ionization}
|
|---|
| 2 |
|
|---|
| 3 | \subsection{Method}
|
|---|
| 4 |
|
|---|
| 5 | The class $G4hIonisation$ provides the continuous energy loss due to
|
|---|
| 6 | ionization and simulates the 'discrete' part of the ionization, that is,
|
|---|
| 7 | delta rays produced by charged hadrons. The class $G4ionIonisation$ is
|
|---|
| 8 | intended for the simulation of energy loss by ions and the approach described
|
|---|
| 9 | in Section \ref{en_loss} is used. The value of the maximum energy
|
|---|
| 10 | transferable to a free electron $T_{max}$ is given by the following relation:
|
|---|
| 11 | \begin{equation}
|
|---|
| 12 | \label{hion.c}
|
|---|
| 13 | T_{max} =\frac{2mc^2(\gamma^2 -1)}{1+2\gamma (m/M)+(m/M)^2 },
|
|---|
| 14 | \end{equation}
|
|---|
| 15 | where $m$ is the electron mass and $M$ is the mass of the incident particle.
|
|---|
| 16 | The method of calculation of the continuous energy loss and the total
|
|---|
| 17 | cross-section are explained below.
|
|---|
| 18 |
|
|---|
| 19 | \subsection{Continuous Energy Loss}
|
|---|
| 20 |
|
|---|
| 21 | The integration of \ref{comion.a} leads to the Bethe-Bloch restricted energy
|
|---|
| 22 | loss formula \cite{hion.pdg} :
|
|---|
| 23 | \begin{equation}
|
|---|
| 24 | \label{hion.d}
|
|---|
| 25 | \left. \frac{dE}{dx} \right]_{T < T_{cut}} =
|
|---|
| 26 | 2 \pi r_e^2 mc^2 n_{el} \frac{(z_p)^2}{\beta^2}
|
|---|
| 27 | \left [\ln \left(\frac{2mc^2 \beta^2 \gamma^2 T_{up}} {I^2} \right)
|
|---|
| 28 | - \beta^2 \left( 1 + \frac{T_{up}}{T_{max}} \right)
|
|---|
| 29 | - \delta - \frac{2C_e}{Z} \right ]
|
|---|
| 30 | \end{equation}
|
|---|
| 31 | where
|
|---|
| 32 | \[
|
|---|
| 33 | \begin{array}{ll}
|
|---|
| 34 | r_e & \mbox{classical electron radius:}
|
|---|
| 35 | \quad e^2/(4 \pi \epsilon_0 mc^2 ) \\
|
|---|
| 36 | mc^2 & \mbox{mass-energy of the electron} \\
|
|---|
| 37 | n_{el} & \mbox{electrons density in the material} \\
|
|---|
| 38 | I & \mbox{mean excitation energy in the material}\\
|
|---|
| 39 | \gamma & \mbox{$E/mc^2$} \\
|
|---|
| 40 | \beta^2 & 1-(1/\gamma^2) \\
|
|---|
| 41 | T_{up} & \min(T_{cut},T_{max}) \\
|
|---|
| 42 | \delta & \mbox{density effect function} \\
|
|---|
| 43 | C_e & \mbox{shell correction function}
|
|---|
| 44 | \end{array}
|
|---|
| 45 | \]
|
|---|
| 46 | In a single element the electron density is
|
|---|
| 47 | $$ n_{el} = Z \: n_{at} = Z \: \frac{\mathcal{N}_{av} \rho}{A} $$
|
|---|
| 48 | ($\mathcal{N}_{av}$: Avogadro number, $\rho$: density of the material,
|
|---|
| 49 | $A$: mass of a mole). In a compound material
|
|---|
| 50 | $$
|
|---|
| 51 | n_{el} = \sum_i Z_i \: n_{ati}
|
|---|
| 52 | = \sum_i Z_i \: \frac{\mathcal{N}_{av} w_i \rho}{A_i} .
|
|---|
| 53 | $$
|
|---|
| 54 | $w_i$ is the proportion by mass of the $i^{th}$ element, with molar mass $A_i$.
|
|---|
| 55 |
|
|---|
| 56 |
|
|---|
| 57 | The mean excitation energy $I$ for all elements is tabulated according to
|
|---|
| 58 | the ICRU recommended values \cite{hion.icru1}.
|
|---|
| 59 |
|
|---|
| 60 | \subsubsection{Density Correction}
|
|---|
| 61 |
|
|---|
| 62 | $\delta$ is a correction term which takes into account the reduction in energy
|
|---|
| 63 | loss due to the so-called {\it density effect}. This becomes important at
|
|---|
| 64 | high energies because media have a tendency to become polarized as the
|
|---|
| 65 | incident particle velocity increases. As a consequence, the atoms in a
|
|---|
| 66 | medium can no longer be considered as isolated. To correct for this effect
|
|---|
| 67 | the formulation of Sternheimer~\cite{hion.sternheimer} is used:
|
|---|
| 68 | \input{electromagnetic/utils/densityeffect}
|
|---|
| 69 |
|
|---|
| 70 | \subsubsection{Shell Correction}
|
|---|
| 71 |
|
|---|
| 72 | $2C_e/Z$ is the so-called {\it shell correction term} which accounts for the
|
|---|
| 73 | fact that, at low energies for light elements and at all energies for heavy
|
|---|
| 74 | ones, the probability of collision with the electrons of the inner atomic
|
|---|
| 75 | shells (K, L, etc.) is negligible. The semi-empirical formula used
|
|---|
| 76 | in {\sc Geant4}, applicable to all materials, is due to
|
|---|
| 77 | Barkas \cite{hion.barkas}:
|
|---|
| 78 | \begin{equation}
|
|---|
| 79 | \label{hion.dd}
|
|---|
| 80 | C_e(I, \beta\gamma) = \frac{a(I)}{(\beta\gamma)^2}
|
|---|
| 81 | +\frac{b(I)}{(\beta\gamma)^4}
|
|---|
| 82 | +\frac{c(I)}{(\beta\gamma)^6} .
|
|---|
| 83 | \end{equation}
|
|---|
| 84 | The functions a(I), b(I) and c(I) can be found in the source code. This
|
|---|
| 85 | formula breaks down at low energies, and is valid only when
|
|---|
| 86 | $\beta\gamma > 0.13$ ($T > 7.9$ MeV for a proton). For $\beta\gamma \leq
|
|---|
| 87 | 0.13$ the shell correction term is calculated as:
|
|---|
| 88 | \begin{equation}
|
|---|
| 89 | \label{hion.ddd}
|
|---|
| 90 | \left . C_{e}(I,\beta\gamma) \rule{0mm}{5mm} \right |_{\beta\gamma \leq 0.13}
|
|---|
| 91 | = C_{e}(I,\beta\gamma=0.13)\frac{\ln(T/T_{2l})}{\ln(7.9 \: \rm MeV/T_{2l})},
|
|---|
| 92 | \end{equation}
|
|---|
| 93 | i.e. the correction is switched off logarithmically from $T=7.9$ MeV
|
|---|
| 94 | to $T=T_{2l}=2$ MeV.
|
|---|
| 95 |
|
|---|
| 96 | \subsubsection{Parameterization}
|
|---|
| 97 |
|
|---|
| 98 | The mean energy loss can be described by the Bethe-Bloch formula
|
|---|
| 99 | (\ref{muion1}) only if the projectile velocity is larger than that of the
|
|---|
| 100 | orbital electrons. In the low-energy region this is not the case, and the
|
|---|
| 101 | parameterization from the ICRU'49 report \cite{hion.ICRU49} is used in the
|
|---|
| 102 | $G4BraggModel$ class. The Bethe-Bloch model is applied for higher kinetic
|
|---|
| 103 | energies of incident particles
|
|---|
| 104 | \begin{equation}
|
|---|
| 105 | \label{muion.lowen1}
|
|---|
| 106 | T > 2 * M/M_{proton} MeV,
|
|---|
| 107 | \end{equation}
|
|---|
| 108 | where $M$ is the particle mass. The details of the low energy
|
|---|
| 109 | parameterization are described in Section \ref{le_had_ion}.
|
|---|
| 110 |
|
|---|
| 111 |
|
|---|
| 112 | \subsection{Total Cross Section per Atom and Mean Free Path}
|
|---|
| 113 |
|
|---|
| 114 | For $T \gg I $ the differential cross section can be written as
|
|---|
| 115 | \begin{equation}
|
|---|
| 116 | \label{hion.i}
|
|---|
| 117 | \frac{d\sigma }{dT} = 2\pi r_e^2 mc^2 Z \frac{z_p^2}{\beta^2} \frac{1}{T^2}
|
|---|
| 118 | \left[ 1 - \beta^2 \frac{T}{T_{max}} + \frac{T^2}{2E^2} \right]
|
|---|
| 119 | \end{equation}
|
|---|
| 120 | \cite{hion.pdg}. In {\sc Geant4} $T_{cut} \geq 1$ keV. Integrating from
|
|---|
| 121 | $T_{cut}$ to $T_{max}$ gives the total cross section per atom :
|
|---|
| 122 | \begin{eqnarray}
|
|---|
| 123 | \label{hion.j}
|
|---|
| 124 | \sigma (Z,E,T_{cut}) & = & \frac {2\pi r_e^2 Z z_p^2}{\beta^2} mc^2 \times
|
|---|
| 125 | \\ & & \left[ \left( \frac{1}{T_{cut}} - \frac{1}{T_{max}} \right)
|
|---|
| 126 | - \frac{\beta^2}{T_{max}} \ln \frac{T_{max}}{T_{cut}}
|
|---|
| 127 | + \frac{T_{max} - T_{cut}}{2E^2}
|
|---|
| 128 | \right] \nonumber
|
|---|
| 129 | \end{eqnarray}
|
|---|
| 130 | The last term is for spin $1/2$ only. In a given material the mean free path
|
|---|
| 131 | is:
|
|---|
| 132 | \begin{equation}
|
|---|
| 133 | \begin{array}{lll}
|
|---|
| 134 | \lambda = (n_{at} \cdot \sigma)^{-1} & or &
|
|---|
| 135 | \lambda = \left( \sum_i n_{ati} \cdot \sigma_i \right)^{-1}
|
|---|
| 136 | \end{array}
|
|---|
| 137 | \end{equation}
|
|---|
| 138 | The mean free path is tabulated during initialization as a function of the
|
|---|
| 139 | material and of the energy for all kinds of charged particles.
|
|---|
| 140 |
|
|---|
| 141 | \subsection{Simulating Delta-ray Production}
|
|---|
| 142 |
|
|---|
| 143 | A short overview of the sampling method is given in Chapter \ref{secmessel}.
|
|---|
| 144 | Apart from the normalization, the cross section \ref{hion.i} can be
|
|---|
| 145 | factorized :
|
|---|
| 146 | \begin{eqnarray}
|
|---|
| 147 | \frac{d\sigma}{dT}=f(T) g(T) &with& T \in [T_{cut}, \ T_{max}]
|
|---|
| 148 | \end{eqnarray}
|
|---|
| 149 | where
|
|---|
| 150 | \begin{eqnarray}
|
|---|
| 151 | f(T) &=& \left(\frac{1}{T_{cut}} - \frac{1}{T_{max}} \right) \frac{1}{T^2} \\
|
|---|
| 152 | g(T) &=& 1 - \beta^2 \frac{T}{T_{max}} + \frac{T^2}{2E^2} .
|
|---|
| 153 | \end{eqnarray}
|
|---|
| 154 | The last term in $g(T)$ is for spin $1/2$ only. The energy $T$ is chosen by
|
|---|
| 155 | \begin{enumerate}
|
|---|
| 156 | \item sampling $T$ from $f(T)$
|
|---|
| 157 | \item calculating the rejection function $g(T)$ and accepting the sampled
|
|---|
| 158 | $T$ with a probability of $g(T)$.
|
|---|
| 159 | \end{enumerate}
|
|---|
| 160 | After the successful sampling of the energy, the direction
|
|---|
| 161 | of the scattered electron is generated with respect to the direction of the
|
|---|
| 162 | incident particle. The azimuthal angle $\phi$ is generated isotropically.
|
|---|
| 163 | The polar angle $\theta$ is calculated from energy-momentum conservation.
|
|---|
| 164 | This information is used to calculate the energy and momentum of both
|
|---|
| 165 | scattered particles and to transform them into the {\em global} coordinate
|
|---|
| 166 | system.
|
|---|
| 167 |
|
|---|
| 168 | \subsubsection{Ion Effective Charge}
|
|---|
| 169 |
|
|---|
| 170 | As ions penetrate matter they exchange electrons with the medium. In the
|
|---|
| 171 | implementation of $G4ionIonisation$ the effective charge approach is
|
|---|
| 172 | used \cite{hion.Ziegler85}.
|
|---|
| 173 | A state of equilibrium between the ion and the medium is assumed, so that
|
|---|
| 174 | the ion's effective charge can be calculated as a function of its kinetic
|
|---|
| 175 | energy in a given material. This is done according to the approximation
|
|---|
| 176 | described in Section \ref{le_had_ion}. Before and after each step the dynamic
|
|---|
| 177 | charge of the ion is recalculated and saved in $G4DynamicParticle$, where
|
|---|
| 178 | it can be used not only for energy loss calculations but also for the
|
|---|
| 179 | sampling of transportation in an electromagnetic field.
|
|---|
| 180 |
|
|---|
| 181 |
|
|---|
| 182 | \subsection{Status of this document}
|
|---|
| 183 | 09.10.98 created by L. Urb\'an. \\
|
|---|
| 184 | 14.12.01 revised by M.Maire \\
|
|---|
| 185 | 29.11.02 re-worded by D.H. Wright \\
|
|---|
| 186 | 01.12.03 revised by V. Ivanchenko \\
|
|---|
| 187 |
|
|---|
| 188 | \begin{latexonly}
|
|---|
| 189 |
|
|---|
| 190 | \begin{thebibliography}{99}
|
|---|
| 191 |
|
|---|
| 192 | \bibitem{hion.pdg}
|
|---|
| 193 | Particle Data Group. Rev. of Particle Properties.
|
|---|
| 194 | Eur. Phys. J. C15. (2000) 1. http://pdg.lbl.gov
|
|---|
| 195 | \bibitem{hion.icru1}
|
|---|
| 196 | ICRU Report No. 37 (1984)
|
|---|
| 197 | \bibitem{hion.sternheimer}
|
|---|
| 198 | R.M.Sternheimer. Phys.Rev. B3 (1971) 3681.
|
|---|
| 199 | \bibitem{hion.barkas}
|
|---|
| 200 | W. H. Barkas. Technical Report 10292,UCRL, August 1962.
|
|---|
| 201 | \bibitem{hion.ICRU49}ICRU (A.~Allisy et al),
|
|---|
| 202 | Stopping Powers and Ranges for Protons and Alpha
|
|---|
| 203 | Particles,
|
|---|
| 204 | ICRU Report 49, 1993.
|
|---|
| 205 | \bibitem{hion.Ziegler85}J.F.~Ziegler, J.P.~Biersack, U
|
|---|
| 206 | .~Littmark, The Stopping
|
|---|
| 207 | and Ranges of Ions in Solids. Vol.1, Pergamon Press, 1985.
|
|---|
| 208 | \end{thebibliography}
|
|---|
| 209 |
|
|---|
| 210 | \end{latexonly}
|
|---|
| 211 |
|
|---|
| 212 | \begin{htmlonly}
|
|---|
| 213 |
|
|---|
| 214 | \subsection{Bibliography}
|
|---|
| 215 |
|
|---|
| 216 | \begin{enumerate}
|
|---|
| 217 | \item Particle Data Group. Rev. of Particle Properties.
|
|---|
| 218 | Eur. Phys. J. C15. (2000) 1. http://pdg.lbl.gov
|
|---|
| 219 | \item ICRU Report No. 37 (1984)
|
|---|
| 220 | \item R.M.Sternheimer. Phys.Rev. B3 (1971) 3681.
|
|---|
| 221 | \item W.H. Barkas. Technical Report 10292,UCRL, August 1962.
|
|---|
| 222 | \item ICRU (A.~Allisy et al),
|
|---|
| 223 | Stopping Powers and Ranges for Protons and Alpha Particles,
|
|---|
| 224 | ICRU Report 49, 1993.
|
|---|
| 225 | \item J.F.~Ziegler, J.P.~Biersack, U.~Littmark, The Stopping
|
|---|
| 226 | and Ranges of Ions in Solids. Vol.1, Pergamon Press, 1985.
|
|---|
| 227 | \end{enumerate}
|
|---|
| 228 |
|
|---|
| 229 | \end{htmlonly}
|
|---|
| 230 |
|
|---|
| 231 |
|
|---|