source: trunk/documents/UserDoc/UsersGuides/PhysicsReferenceManual/latex/electromagnetic/standard/msc.tex @ 1208

Last change on this file since 1208 was 1208, checked in by garnier, 15 years ago

CVS update

File size: 32.9 KB
Line 
1
2
3\section[Multiple Scattering]{Multiple Scattering}
4
5 Geant4 uses a new multiple scattering (MSC) model to simulate the
6multiple scattering of charged particles in matter.  This model does not use
7the Moliere formalism \cite{msc.moliere}, but is based on the more complete
8Lewis theory \cite{msc.lewis}.  The model simulates the scattering of the
9particle after a given step, and also computes the path length
10correction and the lateral displacement.
11
12\subsection{Introduction}
13
14MSC simulation algorithms can be classified as either {\em detailed} or
15{\em condensed}.  In the detailed algorithms, all the collisions/interactions
16experienced by the particle are simulated.  This simulation can be considered
17as exact;  it gives the same results as the solution of the transport equation.
18However, it can be used only if the number of collisions is not too large, a
19condition fulfilled only for special geometries (such as thin foils), or low
20enough kinetic energies.  For larger kinetic energies the average number of
21collisions is very large and the detailed simulation becomes very inefficient.
22High energy simulation codes use condensed simulation algorithms, in which
23the global effects of the collisions are simulated at the end of a track
24segment.  The global effects generally computed in these codes are the net
25displacement, energy loss, and change of direction of the charged particle.
26These quantities are computed from the multiple scattering theories used in
27the codes.  The accuracy of the condensed simulations is limited by the
28approximations of the multiple scattering theories. \\
29
30\noindent
31Most particle physics simulation codes use the multiple scattering theories
32of Moli\`ere \cite{msc.moliere}, Goudsmit and Saunderson \cite{msc.goudsmit}
33and Lewis \cite{msc.lewis}.  The theories of Moli\`ere and Goudsmit-Saunderson
34give only the angular distribution after a step, while the Lewis theory
35computes the moments of the spatial distribution as well.  None of these
36MSC theories gives the probability distribution of the spatial displacement.
37Therefore each of the MSC simulation codes incorporates its own algorithm to
38determine the spatial displacement of the charged particle after a given step.
39These algorithms are not exact, of course, and are responsible for most of the
40uncertainties in the MSC codes.  Therefore the simulation results can depend
41on the value of the step length and generally one has to select the value of
42the step length carefully. \\
43
44\noindent
45A new class of MSC simulation, the {\em mixed} simulation algorithms (see
46e.g.\cite{msc.fernandez}), appeared in the literature recently.  The mixed
47algorithm simulates the {\em hard} collisions one by one and uses a MSC theory to
48treat the effects of the {\em soft} collisions at the end of a given step.  Such
49algorithms can prevent the number of steps from becoming too large and also
50reduce the dependence on the step length. \\ 
51
52\noindent
53The MSC model used in Geant4 belongs to the class of condensed
54simulations.  The model is based on Lewis' MSC theory and uses model functions
55to determine the angular and spatial distributions after a step.  The
56functions have been chosen in such a way as to give the same moments of the
57(angular and spatial) distributions as the Lewis theory.
58
59\subsection{Definition of Terms}
60
61In simulation, a particle is transported by steps through the detector
62geometry.  The shortest distance between the endpoints of a step is called
63the {\em geometrical path length}, $z$.
64In the absence of a magnetic field, this is a straight line.
65For non-zero fields, $z$ is the shortest distance along
66a curved trajectory.  Constraints on $z$ are imposed when particle tracks
67cross volume boundaries.  The path length of an actual particle, however, is
68usually longer than the geometrical path length, due to physical interactions
69like multiple scattering. 
70This distance is called the {\em true path length}, $t$.
71Constraints on $t$ are imposed by the physical processes acting on the
72particle. \\
73
74\noindent
75The properties of the multiple scattering process are completely determined
76by the {\em transport mean free paths}, $\lambda_k$, which are functions of the
77energy in a given material.  The $k$-th transport mean free path is defined as
78
79\begin{equation}
80 \frac {1}{\lambda_k} = 2 \pi n_a \int_{-1}^{1} \left[1 - P_k(cos\chi) \right]
81                   \frac{d\sigma(\chi)}{d\Omega} d(cos\chi)
82\label{msc.a1}
83\end{equation}
84
85\noindent
86where $d\sigma(\chi)/d\Omega$ is the differential cross section of the
87scattering, $P_k(cos\chi)$ is the $k$-th Legendre polynomial, and $n_a$ is the
88number of atoms per volume. \\
89
90\noindent 
91Most of the mean properties of MSC computed in the simulation codes depend
92only on the first and second transport mean free paths.  The mean value of
93the geometrical path length (first moment) corresponding to a given true path
94length $t$ is given by
95\begin{equation}
96 \langle z \rangle =
97            \lambda_1 \left[ 1-\exp \left(-\frac{t}{\lambda_1} \right)\right]
98\label{msc.a}
99\end{equation}
100
101\noindent
102Eq.~\ref{msc.a} is an exact result for the mean value of $z$ if the
103differential cross section has axial symmetry and the energy loss can be
104neglected.  The transformation between true and geometrical path lengths is
105called the {\em path length correction}. This formula and other expressions for
106the first moments of the spatial distribution were taken from either
107 \cite{msc.fernandez} or \cite{msc.kawrakow}, but were originally
108calculated by Goudsmit and Saunderson \cite{msc.goudsmit} and Lewis
109\cite{msc.lewis}. \\
110
111\noindent 
112At the end of the true step length, $t$, the scattering angle is $\theta$.
113The mean value of $cos\theta$ is
114\begin{equation}
115  \langle cos\theta \rangle = \exp \left[-\frac{t}{\lambda_1} \right]
116\label{msc.c}
117\end{equation}
118The variance of $cos\theta$ can be written as
119\begin{equation}
120  \sigma^2 = \langle cos^2\theta \rangle - \langle cos\theta \rangle ^2 =
121             \frac{1 + 2 e^{- 2 \kappa \tau}} {3} - e^{-2 \tau}
122\label{msc.c1}
123\end{equation}
124
125\noindent
126where $\tau = t/\lambda_1$ and $\kappa = \lambda_1/\lambda_2$. \\
127
128\noindent
129 The mean lateral displacement is given by a more complicated formula
130\cite{msc.fernandez}, but this quantity can also be calculated relatively
131easily and accurately.  The square of the {\em mean lateral displacement} is
132\begin{equation}
133 \langle x^2 + y^2 \rangle = \frac{4 \lambda_1^2}{3} \ \left[\tau 
134                  - \frac{\kappa+1}{\kappa}
135                  + \frac{\kappa}{\kappa-1} e^{-\tau} -
136                  \frac{1}{\kappa (\kappa -1)} e^{-\kappa \tau} \right]
137\label{msc.e1}
138\end{equation}
139
140\noindent
141Here it is assumed that the initial particle direction is parallel to the
142the $z$ axis.\\
143
144\noindent 
145 The lateral correlation is determined by the equation
146\begin{equation}
147  \langle x v_x+y v_y \rangle = \frac{2 \lambda_1}{3} \ \left[1
148                      - \frac{\kappa}{\kappa-1} e^{-\tau} +
149                        \frac{1}{\kappa-1} e^{-\kappa \tau} \right]
150\label{msc.e2}
151\end{equation}
152
153\noindent
154 where $v_x$ and $v_y$ are the x and y components of the direction unit
155vector.
156This equation gives the correlation strength between the final lateral
157position and final direction.\\
158
159\noindent
160The transport mean free path values have been calculated by Liljequist et al.
161\cite{msc.liljequist1}, \cite{msc.liljequist2} for electrons and positrons in
162the kinetic energy range \mbox{100 eV - 20 MeV} in 15 materials.  The MSC
163model in Geant4 uses these values for kinetic energies below 10 MeV.
164For high energy particles (above 10 MeV) the transport mean free path
165values have been taken from a paper of R.Mayol and F.Salvat (\cite{msc.mayol}).
166When necessary, the model linearly interpolates
167or extrapolates the transport cross section, $\sigma_1 = 1 / \lambda_1$, in
168atomic number $Z$ and in the square of the particle velocity, $\beta^2$.
169The ratio $\kappa$ is a very slowly varying function of the energy:
170$\kappa > 2$ for $T >$ a few keV, and $\kappa \rightarrow 3$ for very high
171energies (see \cite{msc.kawrakow}).  Hence, a constant value of 2.5 is used
172in the model.\\
173
174\noindent
175  Nuclear size effects are negligible for low energy particles and
176they are accounted for in the Born approximation in \cite{msc.mayol},
177so there is no need for extra corrections of this kind in the model.
178
179\subsection{Path Length Correction}
180
181As mentioned above, the path length correction refers to the transformation
182true path length $\longrightarrow$ geometrical path length and its inverse.
183The true path length $\longrightarrow$ geometrical path length transformation
184is given by eq. \ref{msc.a} if the step is small and the energy loss can be
185neglected.  If the step is not small the energy dependence makes the
186transformation more complicated. For this case Eqs. \ref{msc.c},\ref{msc.a}
187should be modified as
188\begin{equation}
189 \langle cos\theta \rangle = \exp \left[-\int_0^t \frac{du}{\lambda_1 (u)}
190                             \right]
191   \label{msc.ax}
192\end{equation}
193
194\begin{equation}
195 \langle z \rangle =  \int_0^t \langle cos\theta \rangle_u \ du 
196       \label{msc.bx}
197\end{equation}
198
199\noindent
200where $\theta$ is the scattering angle, $t$ and $z$ are the true and
201geometrical path lengths, and $\lambda_1$ is the transport mean free path. \\
202
203\noindent
204In order to compute Eqs. \ref{msc.ax},\ref{msc.bx} the $t$ dependence of the
205transport mean free path must be known. $\lambda_1$ depends on the kinetic
206energy of the particle which decreases along the step.  All computations in
207the model use a linear approximation for this $t$ dependence:
208   \begin{equation}
209          \lambda_1(t) =  \lambda_{10} ( 1- \alpha t)       \label{msc.cx}
210   \end{equation}
211
212\noindent
213Here $\lambda_{10}$ denotes the value of $\lambda_1$ at the start of the step,
214and $\alpha $ is a constant. It is worth noting that Eq. \ref{msc.cx} is
215\emph{not}
216a crude approximation. It is rather good at low ($ < $ 1 MeV) energy.  At
217higher energies the step is generally much smaller than the range of the
218particle, so the change in energy is small and so is the change in $\lambda_1$.
219 Using Eqs. \ref{msc.ax} -  \ref{msc.cx} the explicit formula for
220$\langle cos\theta \rangle$ and $\langle z \rangle$ are :
221\begin{equation}
222   \langle cos\theta \rangle =
223         \left(1 - \alpha t \right)^{\frac{1}{ \alpha \lambda_{10}}}
224  \label{msc.ff}
225\end{equation}
226
227\begin{equation}
228   \langle z \rangle = \frac{1} { \alpha (1 + \frac{1}{\alpha \lambda_{10}})}
229        \left[ 1 - (1 - \alpha t)^{1+ \frac{1}{ \alpha \lambda_{10}}} \right] 
230  \label{msc.dx}
231\end{equation}
232B
233
234\noindent
235The value of the constant $\alpha $ can be expressed using $\lambda_{10}$ and
236$\lambda_{11}$ where $\lambda_{11}$ is the value of the transport mean free
237path at the end of the step
238 \begin{equation}
239    \alpha = \frac{\lambda_{10} - \lambda_{11}} {t \lambda_{10}} 
240   \label{msc.ex}
241 \end{equation}
242
243\noindent
244 At low energies ( $T_{kin} < M$ ,  M - particle mass) $\alpha $ has a simpler
245 form:
246 \begin{equation}
247      \alpha = \frac{1} { r_0}   \label{msc.fx}
248 \end{equation}
249where $r_0$ denotes the range of the particle at the start of the step.
250
251\noindent
252 It can easily be seen that for a small step (i.e. for a step with small
253 relative energy loss) the formula of $\langle z \rangle$ is
254 \begin{equation}
255   \langle z \rangle =
256     \lambda_{10} \left[ 1-\exp{\left( -\frac{t}{\lambda_{10}}\right)}\right] 
257    \label{msc.gx}
258 \end{equation}
259
260\noindent
261Eq. \ref{msc.dx} or \ref{msc.gx} gives the mean value of the geometrical step
262length for a given true step length. \\
263
264\noindent
265The actual geometrical path length is sampled in the
266model according to the simple probability density function defined for
267$v = z/t \in [0 , 1]$ :
268 \begin{equation}
269   f(v) = (k+1)(k+2) v^k (1-v) 
270 \label{msc.d2}
271 \end{equation}
272
273\noindent
274The value of the exponent $k$ is computed from the requirement that $f(v)$
275must give the same mean value for $z = v t$  as eq. \ref{msc.dx} or
276\ref{msc.gx}. Hence
277\begin{equation}
278    k = \frac{3 \langle z \rangle - t}{t - \langle z \rangle}
279\label{msc.d3}
280\end{equation}
281
282\noindent
283The value of $z = v t$ is sampled using  $f(v)$ if $k > 0$, otherwise
284$z = \langle z \rangle$ is used. \\
285
286\noindent
287The geometrical path length $\longrightarrow$ true path length transformation
288is performed using the mean values. The transformation can be written as
289\begin{equation}
290   t(z) = \langle t \rangle = -\lambda_1 \log\left(1-\frac{z}{\lambda_1}\right)
291\label{msc.d4}
292\end{equation}
293 if the geometrical step is small and
294 \begin{equation}
295   t(z) = \frac{1}{\alpha} \left[ 1 - (1 - \alpha w z)^{\frac{1}{w}} \right]
296 \label{msc.hx}
297 \end{equation}
298 where  $$w = 1 + \frac{1}{\alpha \lambda_{10}}$$ if the step is not small, i.e.
299 the energy loss should be taken into account. \\
300
301\noindent
302This transformation is needed when the particle arrives at a volume boundary,
303causing the step to be geometry-limited.  In this case the true path length
304should be computed in order to have the correct energy loss of the particle
305after the step.
306
307\subsection{Angular Distribution}
308
309The quantity $u = cos\theta$ is sampled according to a model function
310$g(u)$.  The shape of this function has been chosen such that 
311Eqs. \ref{msc.c} and \ref{msc.c1} are satisfied.  The functional form of $g$ is
312\begin{equation}
313  g(u) = p [q g_1(u) + (1-q) g_3(u)] + (1-p) g_2(u)
314\label{msc.d}
315\end{equation}
316
317\noindent
318where $ 0 \leq p,q \leq 1 $, and the $g_i$ are simple functions of
319$u = cos\theta$, normalized over the range $ u \in [-1,\ 1] $.  The functions
320$g_i$ have been chosen as
321\begin{equation}
322 g_1(u) = C_{1}\hspace{3mm} e^{-a (1-u)} \hspace{2cm} -1 \leq u_0 \leq u \leq 1
323\label{msc.d5}
324\end{equation}
325\begin{equation}
326 g_2(u) =  C_{2}\hspace{3mm} \frac{1} { (b-u)^d} 
327      \hspace{2cm}  -1 \leq u \leq u_0 \leq 1
328\label{msc.d6}
329\end{equation}
330\begin{equation}
331 g_3(u) =  C_{3} \hspace{4.8cm}  -1 \leq u \leq 1
332\label{msc.d7}
333\end{equation}
334where $a > 0$, $b > 0$, $d > 0$ and $u_0$ are model parameters, and the $C_{i}$
335are normalization constants.  It is worth noting that for small scattering
336angles, $\theta$, $g_1(u)$ is nearly Gaussian ($exp(-\theta^2/2 \theta_0^2)$)
337if $\theta_0^2 \approx 1 / a$, while $g_2(u)$ has a Rutherford-like tail for
338large $\theta$, if $b \approx 1$ and $d$ is not far from 2 .
339
340\subsection{Determination of the Model Parameters}
341
342The parameters $a$, $b$, $d$, $u_0$ and $p$, $q$ are not independent.  The
343requirement that the angular distribution function $g(u)$ and its first
344derivative be continuous at $u = u_0$ imposes two constraints on the
345parameters:
346\begin{equation}
347  p\hspace{1mm} g_1(u_0) = (1-p)\hspace{1mm} g_2(u_0)
348\label{msc.p1}
349\end{equation}
350\begin{equation}
351  p\hspace{1mm} a\hspace{1mm} g_1(u_0) = (1-p)\hspace{1mm}
352  \frac{d}{b-u_0}\hspace{1mm} g_2(u_0)
353\label{msc.p2}
354  \end{equation}
355
356\noindent
357A third constraint comes from Eq. \ref{msc.ax} : $g(u)$ must give the same
358mean value for $u$ as the theory. \\
359
360\noindent
361 It follows from Eqs. \ref{msc.ff} and \ref{msc.d} that
362\begin{equation}
363 q \{ p \langle u \rangle_1 + (1-p) \langle u \rangle_2 \} =
364 [ 1 - \alpha \ t ]\ ^{\frac{1}{\alpha \lambda_{10}}} 
365\label{msc.par1}
366\end{equation}
367where $\langle u \rangle_i$ denotes the mean value of $u$ computed from the
368distribution $g_i(u)$. \\
369
370\noindent
371The parameter $a$ was chosen according to a modified Highland-Lynch-Dahl formula
372for the width of the angular distribution \cite{msc.highland},
373\cite{msc.lynch}.
374\begin{equation}
375   a = \frac {0.5} {1 -cos(\theta_0)}
376\end{equation}
377where $\theta_0$ is
378\begin{equation}
379  \theta_0 = \frac {13.6 MeV}{ \beta c p} z_{ch} \sqrt{\frac{t}{X_0}}
380             \ \left[ 1 + 0.038 \ln \left(\frac{t}{X_0} \right)\ \right]
381\end{equation}
382 
383\noindent 
384when the original Highland-Lynch-Dahl formula is used. 
385Here $\theta_0 = \theta^{rms}_{plane}$ is the width of the approximate
386Gaussian projected angle distribution, $p$, $\beta c$ and $z_{ch}$ are the
387momentum,
388velocity and charge number of the incident particle, and $t/X_0$ is the
389true path length in radiation length unit. This value of
390$\theta_0$ is from a fit to the Moli\`ere distribution for singly charged
391particles with $\beta = 1$ for all Z, and is accurate to 11 $\%$ or better
392for $ 10^{-3} \leq t/X_0 \leq 100$ (see e.g. Rev. of Particle Properties,
393section 23.3). \\
394
395\noindent 
396The modified formula for $\theta_0$ is
397\begin{equation}
398\theta_0 = \frac {13.6 MeV}{\beta c p} z_{ch} \sqrt{\frac{t}{X_0} }
399                \left[ 1 + 0.105 \ln \left(\frac{t}{X_0}\right)
400                         + 0.0035 \left(\ln \left(\frac{t}{X_0}\right)\right)^2
401               \right] ^{\frac{1}{2}} f \left(Z \right)
402\end{equation}
403
404\noindent 
405 where
406\begin{equation}
407   f \left(Z \right) = 1 - \frac{0.24}{ Z \left(Z + 1 \right) }
408\end{equation}
409\noindent 
410 is an empirical correction factor based on high energy proton scattering
411 data \cite{msc.shen}.
412This formula gives a much smaller step dependence in the angular
413distribution and describes the available
414electron scattering data better than the Highland form.  \\
415
416\noindent
417The value of the parameter $u_0$ has been chosen as
418\begin{equation}
419  u_0 \hspace{4mm} = \hspace{4mm} 1 - \frac{\xi}{a}
420\end{equation}
421where $\xi$ is a constant ($\xi = 3$). \\
422
423\noindent
424 The parameter $d$ is set to
425\begin{equation}
426  d \hspace{4mm} = \hspace{4mm} 2.40 - 0.027 \ Z^ \frac{2}{3} 
427\end{equation}
428 This (empirical) expression is obtained comparing the simulation
429 results to the data of the MuScat experiment \cite{msc.attwood}. \\
430
431\noindent
432The remaining three parameters can be computed from
433Eqs. \ref{msc.p1} - \ref{msc.par1}.
434The numerical value of the parameters can be found in the
435code. \\
436
437\noindent
438It should be noted that in this model there is no step limitation
439originating from the multiple scattering process.  Another important feature
440of this model is that the sum of the 'true' step lengths of the particle, that
441is, the total true path length, does not depend on the length of the steps.
442Most algorithms used in simulations do not have these properties. \\
443
444\noindent
445In the case of heavy charged particles ($\mu$, $\pi$, $p$, etc.) the mean
446transport free path is calculated from the electron or positron $\lambda_1$
447values with a 'scaling' applied.  This is possible because the transport
448mean free path $\lambda_1$ depends only on the variable $P \beta c$, where
449$P$ is the momentum, and $\beta c$ is the velocity of the particle. \\
450
451\noindent
452In its present form the model samples the path length correction and angular
453distribution from model functions, while for the lateral displacement and
454the lateral correlation only
455the mean values are  used and all the other correlations are neglected.
456 However, the model
457is general enough to incorporate other random quantities and correlations in
458the future.
459 
460\subsection{The MSC Process in Geant4}
461
462 The step length of the particles is determined by the physics processes or
463 the geometry of the detectors. The tracking/stepping algorithm checks all the
464 step lengths demanded by the (continuous or discrete) physics processes and
465 determines the minimum of these step lengths. \\
466 
467 \noindent
468 Then, this minimum step length
469 must be compared with the length determined by the geometry of the detectors
470 and one has to select the minimum of the 'physics step length' and the
471 'geometrical step length' as the actual step length. \\
472 
473 \noindent
474 This is the point where the MSC model comes into the game. All the
475 physics processes use the true path length $t$ to sample the interaction point,
476 while the step limitation originated from the geometry is a
477 geometrical path length $z$. The MSC algorithm transforms the 'physics step
478 length' into a 'geometrical step length' before the comparison of the two
479 lengths. This 't'\(\rightarrow\)'z' transformation can be called the
480 inverse of the path length correction. \\
481 
482 \noindent
483 After the actual step length has been determined and the particle relocation
484 has been performed  the MSC performs the transformation 'z'\(\rightarrow\)'t',
485 because the energy loss and scattering computation need the true step length
486 't'. \\
487 
488 \noindent
489 The scattering angle $\theta$ of the particle after the step of length 't' is
490 sampled according to the model function given in eq. \ref{msc.d} .
491 The azimuthal angle $\phi$ is generated uniformly in the range $[0, 2 \pi]$. \\
492 
493 \noindent
494 After the simulation of the scattering angle, the lateral displacement is
495 computed using eq. \ref{msc.e1}. Then the correlation given by eq. \ref{msc.e2}
496 is used to determine the direction of the lateral displacement.
497 Before 'moving' the particle according to the displacement a check is performed
498 to ensure that the relocation of the particle with the lateral displacement
499 does not take the particle beyond the volume boundary.
500
501\subsection{Step Limitation Algorithm}
502
503 In Geant4 the boundary crossing is treated by the transportation process.
504 The transportation ensures that the
505 particle does not penetrate in a new volume without stopping at the boundary,
506 it restricts the step size when the particle leaves a volume. However,
507 this step restriction can be rather weak in big volumes and this fact
508 can result a not very good angular distribution after the volume.
509 At the same time, there is no similar
510 step limitation when a particle enters a volume and this fact does not allow
511 a good backscattering simulation for low energy particles. Low energy particles
512 penetrate too deeply into the volume in the first step and then - because
513 of energy loss - they are not able to reach again the boundary in backward
514 direction.\\
515 
516 \noindent
517 A very simple step limitation algorithm has been implemented in the
518 MSC code to cure this situation. At the start of a track or after
519 entering in a new volume, the algorithm restricts
520 the step size to a value
521 \begin{equation}
522  f_r \cdot max\{r,\lambda_1\}
523 \end{equation}
524 where $r$ is the range of the particle, $f_r$ is a constant ($f_r \in [0, 1]$);
525 taking the max of $r$ and $\lambda_1$ is an empirical choice. In order not to
526 use very small - unphysical - step sizes a lower limit is given for the step
527 size as
528\begin{equation}
529 tlimitmin = max\left[ \frac{\lambda_1}{nstepmax}, \lambda_{elastic} \right]
530 \end{equation}
531 with $nstepmax = 25$ and $\lambda_{elastic}$ is the elastic mean free path
532 of the particle (see later).\\
533
534\noindent
535 It can be easily seen that this kind of step limitation poses a real constraint
536 only for low energy particles. \\
537 
538\noindent 
539 In order to prevent a particle from crossing
540 a volume in just one step, an additional limitation is imposed:
541 after entering a volume
542 the step size cannot be bigger than
543 \begin{equation}
544  \frac {d_{geom}}{f_g}
545 \end{equation}
546 where $d_{geom}$ is the distance to the next boundary (in the direction
547 of the particle) and $f_g$ is a constant parameter.  A similar restriction
548 at the start of a track is
549 \begin{equation}
550  \frac {2 d_{geom}}{f_g}
551 \end{equation}
552 
553\noindent
554 The choice of the parameters $f_r$ and $f_g$ is also
555 related to performance.  By default $f_r = 0.02$ and $f_g = 2.5$
556 are used, but these may
557 be set to any other value in a simple way. One can get an
558 approximate simulation of the backscattering with the default value, while
559 if a better backscattering simulation is needed it is possible to get it
560 using a smaller value for $f_r$. However, this model is very simple and
561 it can only approximately reproduce the backscattering data.
562 
563\subsection{Boundary Crossing Algorithm}
564
565 A special stepping algorithm has been implemented recently (Autumn 2006)
566 in order to improve the simulation around interfaces.
567 This algorithm does not allow 'big' last steps in a volume and 'big' first steps
568 in the next volume. The step length of these steps around a boundary crossing
569  can not be bigger than the mean free path of the elastic scattering
570 of the particle in the given volume (material). After these small steps the particle
571 scattered according to a single scattering law (i.e. there is no multiple scattering
572 very close to the boundary or at the boundary). \\
573
574\noindent
575  The key parameter of the algorithm is the variable called $skin$. The algorithm is
576 not active for $skin \leq 0$, while for $skin > 0$ it is active in layers
577 of thickness  $skin \cdot \lambda_{elastic}$ before boundary crossing
578 and of thickness $(skin-1) \cdot \lambda_{elastic}$ after
579 boundary crossing (for $skin=1$ there is only one small step just before
580 the boundary). In this active area  the particle
581 performs steps of length $\lambda_{elastic}$ (or smaller if the particle reaches the
582  boundary traversing a smaller distance than this value). \\
583 
584\noindent 
585 The scattering at the end of a small step is single or
586 plural and for these small steps there are no path length correction
587 and lateral displacement computation. In other words the program works in this
588 thin layer in 'microscopic mode'. \\
589 
590\noindent 
591  The elastic mean free path can be estimated as
592 \begin{equation}
593  \lambda_{elastic} = \lambda_1 \cdot rat \left( T_{kin} \right)
594 \end{equation}
595  where $rat(T_{kin})$ a simple empirical function computed from the elastic and
596  first transport cross section values of Mayol and Salvat \cite{msc.mayol}
597 
598 \begin{equation}
599  rat \left( T_{kin} \right) = \frac{0.001 (MeV)^2} 
600                              { T_{kin} \left(T_{kin} + 10 MeV \right)}
601 \end{equation}
602  $T_{kin}$ is the kinetic energy of the particle. \\
603 
604\noindent 
605  At the end of a small step the number of scatterings is sampled according to
606 the Poissonian distribution with a mean value  $t/\lambda_{elastic}$ and in the
607 case of plural scattering the final scattering angle is computed by summing 
608 the contributions of the individual scatterings. \\
609\noindent 
610  The single scattering is determined by the distribution
611 \begin{equation}
612   g(u) = C \frac{1} {(1 + 0.5 a^2 -u)^2}                         
613 \end{equation}
614  where $u = \cos(\theta)$ , $a$ is the screening parameter,
615    $C$ is a normalization constant. The form of the screening parameter is
616 \begin{equation}
617   a = \frac{\alpha Z^{1/3}}{\sqrt{(\tau (\tau+2))}}                 
618 \end{equation}
619  where $Z$ is the atomic number, $\tau$ is the kinetic energy measured in
620  particle mass units, $\alpha$ is a constant.
621  It can be shown easily that the function $g(u)$ for small scattering angle $\theta$
622 is equivalent to the well known screened Rutherford scattering formula :
623 \begin{equation}
624  \tilde{g}(\theta) \ d\Omega = \tilde{C} 
625                                 \frac{\theta \ d\theta} { (a^2 + \theta^2)^2}       
626 \end{equation}
627
628
629\subsection{Implementation Details}
630
631The {\sf G4MultipleScattering} process contains some intialization
632functions which allow the values of stepping and model parameters
633to be defined. \\
634
635\noindent
636The stepping/boundary crossing algorithm is governed by the data members
637$f_r$ and $f_g$ (facrange and facgeom in the code) and $skin$. The default values
638of $f_r$ and $f_g$ parameters are $0.02$ and $2.5$ resp. but these values can be changed
639via set functions :
640\begin{itemize}
641\item
642{\tt MscStepLimitation(bool, double)} - activate/deactivate stepping algorithm
643and set facrange value;
644\item 
645{\tt SetFacrange(double)}
646\item 
647{\tt SetFacgeom(double)}
648\end{itemize}
649  The default value of $skin$ is $1$ for electrons and positrons and $0$ for all
650 the other charged particles. These default values can be changed using the set function
651    {\sf SetSkin(double)}. \\
652
653\noindent
654 The concrete physics model is implemented in the class {\sf G4UrbanMscModel}.
655 As the boundary crossing/stepping algorithm is a part of the model, this class
656 contains it in the {\tt TruePathLengthLimit} method.  \\
657 
658\noindent 
659 Because multiple scattering is very similar for different particles the base
660class {\sf G4VMultipleScattering} was created to collect and provide significant
661features of the calculations which are common to different particle types. \\
662
663\noindent
664In the {\tt AlongStepGetPhysicalInteractionLength} method the minimum step
665size due to the physics processes is compared with the step size constraints
666imposed by the transportation process and the geometry.  In order to do this,
667the \mbox{'t' step $\rightarrow$ 'z' step} transformation must be performed. 
668Therefore, the method should be invoked after the
669{\tt GetPhysicalInteractionLength} methods of other physics processes,
670but before the same method of the transportation process.
671The reason for this ordering is that the physics processes 'feel'
672the true path length $t$ traveled by the particle, while the transportation
673process (geometry) uses the $z$ step length.\\ 
674
675\noindent
676At this point the program also checks whether the particle has entered a
677new volume.  If it has, the particle steps cannot be bigger than
678 $t_{lim} = f_r\hspace{2mm} max( r, \lambda )$.  This step limitation is
679governed by the physics, because $t_{lim}$ depends on the particle energy
680and the material. \\
681
682\noindent
683The {\tt PostStepGetPhysicalInteractionLength} method of the multiple
684scattering process simply sets the force flag to 'Forced' in order to
685ensure that {\tt PostStepDoIt} is called at every step.  It also returns a
686large value for the interaction length so that there is no step limitation
687at this level. \\
688
689\noindent
690The {\tt AlongStepDoIt} function of the process performs the inverse,\linebreak
691\mbox{'z' $\rightarrow$ 't'} transformation.  This function should be
692invoked after the \linebreak {\tt AlongStepDoIt} mehtod of the transportation
693process, that is, after the particle relocation is determined by the
694geometrical step length, but before applying any other physics
695{\tt AlongStepDoIt}. \\
696
697\noindent
698The {\tt PostStepDoIt} method of the process samples the scattering angle
699and performs the lateral displacement when the particle is not near a boundary.
700
701\subsection{Status of this document}
702 09.10.98  created by L. Urb\'an. \\
703 15.11.01  major revision by L. Urb\'an.\\
704 18.04.02  updated by L. Urb\'an. \\
705 25.04.02  re-worded by D.H. Wright \\
706 07.06.02  major revision by L. Urb\'an. \\
707 18.11.02  updated by L. Urb\'an, now it describes the new angle distribution. \\
708 05.12.02  grammar check and parts re-written by D.H. Wright \\
709 13.11.03  revision by L. Urb\'an. \\
710 01.12.03  revision by V. Ivanchenko. \\
711 17.05.04  revision by L.Urb\'an. \\
712 01.12.04  updated by L.Urb\'an. \\
713 18.03.05  sampling z + mistyping corrections (mma) \\
714 22.06.05  grammar, spelling check by D.H. Wright \\
715 12.12.05  revised by L. Urb\'an, according Msc version in Geant4 V8.0 \\
716 14.12.05  updated Implementation Details (mma) \\
717 08.06.06  revised by L. Urb\'an, according Msc version in Geant4 V8.1 \\
718 25.11.06  revised by L. Urb\'an, according Msc version in Geant4 V8.2 \\
719 29.03.07  revised by L. Urb\'an \\
720 
721\begin{latexonly}
722
723\begin{thebibliography}{99}
724
725\bibitem{msc.moliere} G. Z. Moli\`ere
726   {\em Z. Naturforsch. 3a (1948) 78. }
727\bibitem{msc.lewis} H. W. Lewis.
728   {\em Phys. Rev. 78 (1950) 526. }
729\bibitem{msc.goudsmit}S. Goudsmit and J. L. Saunderson.
730   {\em Phys. Rev. 57 (1940) 24. }
731\bibitem{msc.fernandez}J. M. Fernandez-Varea et al.
732   {\em NIM B73 (1993) 447.}
733\bibitem{msc.kawrakow} I. Kawrakow and Alex F. Bielajew
734   {\em NIM B 142 (1998) 253. }
735\bibitem{msc.liljequist1} D. Liljequist and M. Ismail.
736   {\em J.Appl.Phys. 62 (1987) 342. }
737\bibitem{msc.liljequist2} D. Liljequist et al.
738   {\em J.Appl.Phys. 68 (1990) 3061. }
739\bibitem{msc.mayol} R.Mayol and F.Salvat
740   {\em At.Data and Nucl.Data Tables} {\bf 65}, p. 55 (1997).
741\bibitem{msc.highland} V.L.Highland
742   {\em NIM 129 (1975) 497. }
743\bibitem{msc.lynch} G.R. Lynch and O.I. Dahl
744   {\em NIM B58 (1991) 6. }
745\bibitem{msc.shen} G.Shen et al.
746   {\em Phys. Rev. D 20 (1979) 1584.}
747\bibitem{msc.attwood} D. Attwood et al.
748   {\em NIM B 251 (2006) 41.}
749\end{thebibliography}
750
751\end{latexonly}
752
753\begin{htmlonly}
754
755\subsection{Bibliography}
756
757\begin{enumerate}
758
759\item  G. Z. Moli\`ere
760   {\em Z. Naturforsch. 3a (1948) 78. }
761\item H. W. Lewis
762   {\em Phys. Rev. 78 (1950) 526. }
763\item S. Goudsmit and J. L. Saunderson.
764   {\em Phys. Rev. 57 (1940) 24. }
765\item J. M. Fernandez-Varea et al.
766   {\em NIM B73 (1993) 447.}
767\item I. Kawrakow and Alex F. Bielajew
768   {\em NIM B 142 (1998) 253. }
769\item D. Liljequist and M. Ismail.
770   {\em J.Appl.Phys. 62 (1987) 342. }
771\item D. Liljequist et al.
772   {\em J.Appl.Phys. 68 (1990) 3061. }
773\item R.Mayol and F.Salvat
774   {\em At.Data and Nucl.Data Tables 65 (1997) 55.}
775\item V.L.Highland
776   {\em NIM 129 (1975) 497. }
777\item G.R. Lynch and O.I. Dahl
778   {\em NIM B58 (1991) 6. }
779\item{msc.shen} G.Shen et al.
780   {\em Phys. Rev. D 20 (1979) 1584.}
781\item{msc.attwood} D. Attwood et al.
782   {\em NIM B 251 (2006) 41.}
783\end{enumerate}
784
785\end{htmlonly}
786
787
788
Note: See TracBrowser for help on using the repository browser.