\section[Photoelectric Effect]{PhotoElectric effect} The photoelectric effect is the ejection of an electron from a material after a photon has been absorbed by that material. It is simulated by using a parameterized photon absorption cross section to determine the mean free path, atomic shell data to determine the energy of the ejected electron, and the K-shell angular distribution to sample the direction of the electron. \subsection{Cross Section and Mean Free Path} The parameterization of the photoabsorption cross section proposed by Biggs et al. \cite{ph.sandia} was used : \begin{equation} \label{eqsandia} \sigma(Z,E_{\gamma}) = \frac{a(Z,E_{\gamma})}{E_{\gamma}} + \frac{b(Z,E_{\gamma})}{E_{\gamma}^2} + \frac{c(Z,E_{\gamma})}{E_{\gamma}^3} + \frac{d(Z,E_{\gamma})}{E_{\gamma}^4} \end{equation} \noindent Using the least-squares method, a separate fit of each of the coefficients $a,b,c,d$ to the experimental data was performed in several energy intervals \cite{ph.sandia.grich}. As a rule, the boundaries of these intervals were equal to the corresponding photoabsorption edges. \noindent In a given material the mean free path, $\lambda$, for a photon to interact via the photoelectric effect is given by : \begin{equation} \label{lambda} \lambda(E_{\gamma}) = \left( \sum_i n_{ati} \cdot \sigma (Z_i,E_{\gamma}) \right)^{-1} \end{equation} where $n_{ati}$ is the number of atoms per volume of the $i^{th}$ element of the material. The cross section and mean free path are discontinuous and must be computed 'on the fly' from the formulas \ref{eqsandia} and \ref{lambda}. \subsection{Final State} \subsubsection{Choosing an Element} The binding energies of the shells depend on the atomic number $Z$ of the material. In compound materials the $i^{th}$ element is chosen randomly according to the probability: \[ Prob(Z_i,E_{\gamma}) = \frac{n_{ati} \sigma(Z_i,E_{\gamma})} {\sum_i [ n_{ati} \cdot \sigma_i (E_{\gamma})]} . \] \subsubsection{Shell} A quantum can be absorbed if $E_{\gamma} > B_{shell}$ where the shell energies are taken from {\tt G4AtomicShells} data: the closest available atomic shell is chosen. The photoelectron is emitted with kinetic energy : \begin{equation} T_{photoelectron} = E_{\gamma}-B_{shell}(Z_i) \end{equation} \subsubsection{Theta Distribution of the Photoelectron} The polar angle of the photoelectron is sampled from the Sauter-Gavrila distribution (for K-shell) \cite{ph.cost}, which is correct only to zero order in $\alpha Z$ : \begin{equation} \frac{d\sigma}{d(\cos\theta)} \sim \frac{\sin^2\theta}{(1-\beta\cos\theta)^4} \left\lbrace 1 + \frac{1}{2} \gamma (\gamma-1)(\gamma-2)(1-\beta\cos\theta) \right\rbrace \end{equation} where $\beta$ and $\gamma$ are the Lorentz factors of the photoelectron. \noindent $\cos\theta$ is sampled from the probability density function : \begin{equation} f(\cos\theta) = \frac{1-\beta^2}{2\beta} \frac{1}{(1-\beta\cos\theta)^2} \hspace{5mm} \Longrightarrow \hspace{5mm} \cos\theta = \frac{(1-2r)+\beta}{(1-2r)\beta+1} \end{equation} The rejection function is : \begin{equation} g(\cos\theta) = \frac{1-\cos^2\theta}{(1-\beta\cos\theta)^2} \left\lbrack 1+b(1-\beta\cos\theta) \right\rbrack \end{equation} with $b=\gamma(\gamma-1)(\gamma-2)/2$ \\ It can be shown that $g(\cos\theta)$ is positive $\forall \cos\theta \in [-1,\ +1]$, and can be majored by : \begin{eqnarray} gsup&=&\gamma^2 \ \lbrack 1+b(1-\beta) \rbrack \mbox{ if } \gamma \in \ ]1,2] \\ &=&\gamma^2 \ \lbrack 1+b(1+\beta) \rbrack \mbox{ if } \gamma > 2 \nonumber \end{eqnarray} The efficiency of this method is $\sim 50\%$ if $\gamma < 2$, $\sim 25\%$ if $\gamma \in [2,\ 3]$. \subsubsection{Relaxation} In the current implementation the relaxation of the atom is not simulated, but instead is counted as a local energy deposit. \subsection{Status of this document} 09.10.98 created by M.Maire. \\ 08.01.02 updated by mma \\ 22.04.02 re-worded by D.H. Wright \\ 02.05.02 modifs in total cross section and final state (mma) \\ 15.11.02 introduction added by D.H. Wright \\ \begin{latexonly} \begin{thebibliography}{99} \bibitem{ph.sandia} Biggs F., and Lighthill R., {Preprint Sandia Laboratory, SAND 87-0070} (1990) \bibitem{ph.sandia.grich} Grichine V.M., Kostin A.P., Kotelnikov S.K. et al., {Bulletin of the Lebedev Institute no. 2-3, 34} (1994). \bibitem{ph.cost} Gavrila M. {Phys.Rev. 113, 514} (1959). \end{thebibliography} \end{latexonly} \begin{htmlonly} \subsection{Bibliography} \begin{enumerate} \item Biggs F., and Lighthill R., {Preprint Sandia Laboratory, SAND 87-0070} (1990) \item Grichine V.M., Kostin A.P., Kotelnikov S.K. et al., {Bulletin of the Lebedev Institute no. 2-3, 34} (1994). \item Gavrila M. {Phys.Rev. 113, 514} (1959). \end{enumerate} \end{htmlonly}