source: trunk/documents/UserDoc/UsersGuides/PhysicsReferenceManual/latex/electromagnetic/standard/photoelec.tex @ 1208

Last change on this file since 1208 was 1208, checked in by garnier, 15 years ago

CVS update

File size: 4.8 KB
Line 
1
2\section[Photoelectric Effect]{PhotoElectric effect}
3
4The photoelectric effect is the ejection of an electron from a material after
5a photon has been absorbed by that material.  It is simulated by using a
6parameterized photon absorption cross section to determine the mean free path,
7atomic shell data to determine the energy of the ejected electron, and the
8K-shell angular distribution to sample the direction of the electron.
9 
10\subsection{Cross Section and Mean Free Path}
11
12The parameterization of the photoabsorption cross section proposed by
13Biggs et al. \cite{ph.sandia} was used :
14\begin{equation}  \label{eqsandia}
15\sigma(Z,E_{\gamma}) = \frac{a(Z,E_{\gamma})}{E_{\gamma}} +
16                       \frac{b(Z,E_{\gamma})}{E_{\gamma}^2} +
17                       \frac{c(Z,E_{\gamma})}{E_{\gamma}^3} +
18                       \frac{d(Z,E_{\gamma})}{E_{\gamma}^4}
19\end{equation}
20
21\noindent 
22Using the least-squares method, a separate fit of each of the coefficients
23$a,b,c,d$ to the experimental data was performed in several energy intervals
24\cite{ph.sandia.grich}.  As a rule, the boundaries of these intervals were
25equal to the corresponding photoabsorption edges.
26 
27\noindent
28In a given material the mean free path, $\lambda$, for a photon to interact
29via the photoelectric effect is given by :
30\begin{equation}  \label{lambda}
31\lambda(E_{\gamma}) =
32 \left( \sum_i n_{ati} \cdot \sigma (Z_i,E_{\gamma}) \right)^{-1}
33\end{equation}
34where $n_{ati}$ is the number of atoms per volume of the $i^{th}$ element
35of the material.  The cross section and mean free path are
36discontinuous and must be computed 'on the fly' from the formulas
37 \ref{eqsandia} and \ref{lambda}.
38
39\subsection{Final State}
40\subsubsection{Choosing an Element}
41The binding energies of the shells depend on the atomic number $Z$ of the
42material.  In compound materials the $i^{th}$ element is chosen randomly
43according to the probability:
44\[
45  Prob(Z_i,E_{\gamma}) = 
46                      \frac{n_{ati} \sigma(Z_i,E_{\gamma})}
47                      {\sum_i [ n_{ati} \cdot \sigma_i (E_{\gamma})]} .
48\]
49\subsubsection{Shell}
50A quantum can be absorbed if $E_{\gamma} > B_{shell}$ where the shell
51energies are taken from {\tt G4AtomicShells} data: the closest available
52atomic shell is chosen.  The photoelectron is emitted with kinetic energy :
53\begin{equation}
54T_{photoelectron} = E_{\gamma}-B_{shell}(Z_i)
55\end{equation}
56
57\subsubsection{Theta Distribution of the Photoelectron}
58The polar angle of the photoelectron is sampled from the Sauter-Gavrila
59distribution (for K-shell) \cite{ph.cost}, which is correct only to zero order
60in $\alpha Z$ :
61\begin{equation}
62\frac{d\sigma}{d(\cos\theta)} \sim \frac{\sin^2\theta}{(1-\beta\cos\theta)^4}
63\left\lbrace 1 + \frac{1}{2} \gamma (\gamma-1)(\gamma-2)(1-\beta\cos\theta)
64\right\rbrace
65\end{equation}
66where $\beta$ and $\gamma$ are the Lorentz factors of the photoelectron.
67
68\noindent
69$\cos\theta$ is sampled from the probability density function :
70\begin{equation}
71f(\cos\theta) = \frac{1-\beta^2}{2\beta} \frac{1}{(1-\beta\cos\theta)^2}
72\hspace{5mm} \Longrightarrow \hspace{5mm}
73\cos\theta = \frac{(1-2r)+\beta}{(1-2r)\beta+1}
74\end{equation}
75The rejection function is :
76\begin{equation}
77g(\cos\theta) = \frac{1-\cos^2\theta}{(1-\beta\cos\theta)^2}
78\left\lbrack 1+b(1-\beta\cos\theta) \right\rbrack
79\end{equation}
80with $b=\gamma(\gamma-1)(\gamma-2)/2$  \\
81It can be shown that $g(\cos\theta)$ is positive $\forall \cos\theta \in
82[-1,\ +1]$, and can be majored by :
83\begin{eqnarray}
84gsup&=&\gamma^2 \ \lbrack 1+b(1-\beta) \rbrack \mbox{ if } \gamma \in \ ]1,2] \\
85    &=&\gamma^2 \ \lbrack 1+b(1+\beta) \rbrack \mbox{ if } \gamma > 2 \nonumber
86\end{eqnarray}
87The efficiency of this method is $\sim 50\%$ if $\gamma < 2$, $\sim 25\%$ if
88$\gamma \in [2,\ 3]$.
89
90\subsubsection{Relaxation} 
91In the current implementation the relaxation of the atom is not simulated,
92but instead is counted as a local energy deposit.
93
94\subsection{Status of this document}
9509.10.98 created by M.Maire. \\
9608.01.02 updated by mma \\
9722.04.02 re-worded by D.H. Wright \\
9802.05.02 modifs in total cross section and final state (mma) \\
9915.11.02 introduction added by D.H. Wright \\
100
101\begin{latexonly}
102
103\begin{thebibliography}{99}
104\bibitem{ph.sandia} Biggs F., and Lighthill R.,
105{Preprint Sandia Laboratory, SAND 87-0070} (1990)
106\bibitem{ph.sandia.grich} Grichine V.M., Kostin A.P., Kotelnikov S.K. et al.,
107{Bulletin of the Lebedev Institute no. 2-3, 34} (1994).
108\bibitem{ph.cost} Gavrila M.
109{Phys.Rev. 113, 514} (1959).
110\end{thebibliography}
111
112\end{latexonly}
113
114\begin{htmlonly}
115
116\subsection{Bibliography}
117
118\begin{enumerate}
119\item Biggs F., and Lighthill R.,
120{Preprint Sandia Laboratory, SAND 87-0070} (1990)
121\item Grichine V.M., Kostin A.P., Kotelnikov S.K. et al.,
122{Bulletin of the Lebedev Institute no. 2-3, 34} (1994).
123\item Gavrila M.
124{Phys.Rev. 113, 514} (1959).
125\end{enumerate}
126
127\end{htmlonly}
128
129
130
131
Note: See TracBrowser for help on using the repository browser.