source: trunk/documents/UserDoc/UsersGuides/PhysicsReferenceManual/latex/electromagnetic/standard/polarisation.tex @ 1292

Last change on this file since 1292 was 1208, checked in by garnier, 15 years ago

CVS update

File size: 70.1 KB
Line 
1
2% ======================================================================
3
4%\newcommand{\bvec}[1]{{\mathbf{#1}}}
5\newcommand{\bvec}[1]{{\boldsymbol{#1}}}  %% use boldsymbol if amsmath is available!
6
7\section{Introduction}\label{sec:pol.intro}
8
9With the EM polarization extension it is possible to track polarized
10particles (leptons and photons). Special emphasis will be
11put in the proper treatment of polarized matter and its interaction
12with longitudinal polarized electrons/positrons or circularly
13polarized photons, which is for instance essential for the simulation
14of positron polarimetry. The implementation is base on Stokes vectors
15\cite{polIntro:McMaster:1961}. Further details can be found in
16\cite{polIntro:Laihem:thesis}.
17
18In its current state, the following polarization
19dependent processes are considered
20\begin{itemize}
21\item Bhabha/M{\o}ller scattering,
22\item Positron Annihilation,
23\item Compton scattering,
24\item Pair creation,
25\item Bremsstrahlung.
26\end{itemize}
27
28%\subsection{Existing codes for the simulation of polarized processes}
29
30Several simulation packages for the realistic description
31of the development of electromagnetic showers in matter have been
32developed. A prominent example of such codes is EGS (Electron Gamma
33Shower)\cite{polIntro:Nelson:1985ec}.
34For this simulation framework extensions with the treatment of
35polarized particles exist \cite{polIntro:Floettmann:thesis,polIntro:Namito:1993sv,polIntro:Liu:2000ey};
36the most complete has been developed by K.~Fl{\"o}ttmann
37\cite{polIntro:Floettmann:thesis}. It is based on the matrix formalism
38\cite{polIntro:McMaster:1961}, which enables a very general treatment of
39polarization. However, the Fl{\"o}ttmann extension concentrates on
40evaluation of polarization transfer, i.e.\ the effects of polarization
41induced asymmetries are neglected, and interactions with polarized
42media are not considered. 
43
44Another important simulation tool for detector studies is \textsc{Geant3}
45\cite{polIntro:Brun:1985ps}. Here also some effort has been made to include
46polarization \cite{polIntro:Alexander:2003fh,polIntro:Hoogduin:thesis}, but these
47extensions are not publicly available.
48
49%\section{Definitions}
50
51In general the implementation of polarization in this EM polarization
52library follows very closely the approach by K.~Fl{\"o}tt\-mann
53\cite{polIntro:Floettmann:thesis}. The basic principle is to associate a {\em
54Stokes vector} to each particle and track the mean polarization from
55one interaction to another. The basics for this approach is the matrix
56formalism as introduced in \cite{polIntro:McMaster:1961}.
57
58\subsection{Stokes vector}
59
60The {\em Stokes vector} \cite{polIntro:Stokes:1852,polIntro:McMaster:1961} is a rather
61simple object (in comparison to e.g.\ the spin density matrix), three
62real numbers are sufficient for the characterization of the polarization
63state of any single electron, positron or photon.
64Using {\em Stokes vectors} {\bf all} possible polarization states can
65be described, i.e.\ circular and linear polarized photons can be
66handled with the same formalism as longitudinal
67and transverse polarized electron/positrons.
68
69The {\em Stokes vector} can be used also for beams, in the sense that
70it defines a mean polarization.
71
72In the EM polarization library the Stokes vector is  defined as
73follows:
74
75\begin{center}
76%\rotatebox{90}{ Method A}
77\renewcommand{\arraystretch}{1.15}
78\begin{tabular}{|c|c|c|}
79\hline
80        & Photons                    & Electrons \\
81\hline 
82$\xi_1$ & linear polarization        &  polarization in x direction \\
83$\xi_2$ & linear polarization but $\pi/4$ to right
84                                     &  polarization in y direction \\
85$\xi_3$ & circular polarization      &  polarization in z direction \\
86\hline
87\end{tabular}
88\end{center}
89This definition is assumed in the {\em particle reference frame},
90i.e. with the momentum of the particle pointing to the z direction,
91cf.\ also next section about coordinate transformations.
92Correspondingly a 100\% longitudinally polarized
93electron or positron is characterized by
94\begin{equation}
95  \bvec{\xi}=\mbox{$\scriptscriptstyle\left(\begin{array}{c}0\\0\\\pm1\end{array}\right)$},
96\end{equation}
97where $\pm1$ corresponds to spin parallel (anti parallel) to   
98particle's momentum.
99%
100Note that this definition is similar, but not
101identical to the definition used in McMaster \cite{polIntro:McMaster:1961}.
102
103Many scattering cross sections of polarized processes using
104Stokes vectors for the characterization of initial and final states are
105available in \cite{polIntro:McMaster:1961}. In general a differential cross
106section has the form
107\begin{equation}
108  \frac{d\sigma(\bvec{\zeta}^{(1)},\bvec{\zeta}^{(2)},\bvec{\xi}^{(1)},\bvec{\xi}^{(2)})}{d\Omega}\;,
109\end{equation}
110i.e.\ it is a function of the polarization states of the initial
111particles $\bvec{\zeta}^{(1)}$ and $\bvec{\zeta}^{(2)}$, as well as of the polarization states
112of the final state particles $\bvec{\xi}^{(1)}$ and $\bvec{\xi}^{(2)}$ (in addition to the
113kinematic variables $E$, $\theta$, and $\phi$).
114
115Consequently, in a simulation we have to account for
116\begin{itemize}
117\item   Asymmetries:
118\item[] Polarization of beam ($\bvec{\zeta}^{(1)}$) and target ($\bvec{\zeta}^{(2)}$) can induce
119azimuthal and polar asymmetries, and may also influence on the total
120cross section ({\tt Geant4: GetMeanFreePath()}).
121\item   Polarization transfer / depolarization effects
122\item[] The dependence on the final state polarizations defines a
123possible transfer from initial polarization to final state particles.
124\end{itemize}
125
126\subsection{Transfer matrix}
127
128%For asymmetries one can extent the existing standard EM physics classes,
129%introducing the polarization of the initial states. On the other hand
130%for a general simulation of polarization transfer one has to work harder.
131Using the formalism of McMaster, differential cross section and
132polarization transfer from the initial state ($\bvec{\zeta}^{(1)}$) to one final state
133particle ($\bvec{\xi}^{(1)}$) are combined in an interaction matrix $T$:
134
135\begin{equation}
136 \left(\begin{array}{c} 
137    O \\
138 \bvec{\xi}^{(1)}   
139 \end{array}\right)
140 = T \,
141 \left(\begin{array}{c} 
142    I \\
143 \bvec{\zeta}^{(1)}   
144 \end{array}\right)\;,
145\end{equation}
146where $I$ and $O$ are the incoming and outgoing currents, respectively.
147%
148In general the $4\times4$ matrix $T$ depends on the target
149polarization $\bvec{\zeta}^{(2)}$ (and of course on the kinematic
150variables $E$, $\theta$, $\phi$). Similarly one can define
151a matrix defining the polarization transfer to second final state
152particle like
153\begin{equation}
154\left(\begin{array}{c}
155 O \\
156 \bvec{\xi}^{(2)}
157\end{array}\right)   
158  = T' \, 
159\left(\begin{array}{c}I\\
160\bvec{\zeta}^{(1)}\end{array}\right)   \;.
161\end{equation}
162%
163%The components $I$ and $O$ refer to the incoming and outgoing
164%intensities, respectively.
165In this framework the transfer matrix $T$  is of the form
166\begin{equation}
167 T =
168  \left(
169  \begin{array}{llll}
170     S   &   A_1    &  A_2    &  A_3    \\
171     P_1 &   M_{11} &  M_{21} &  M_{31} \\
172     P_2 &   M_{12} &  M_{22} &  M_{32} \\
173     P_3 &   M_{13} &  M_{23} &  M_{33} \\
174  \end{array}
175  \right)
176 \;.
177\end{equation}
178The matrix elements $T_{ij}$ can be identified as (unpolarized)
179differential cross section ($S$), polarized differential cross section
180($A_j$), polarization transfer ($M_{ij}$), and (de)polarization ($P_i$).
181In the Fl{\"o}ttmann extension the elements $A_j$ and $P_i$ have been
182neglected, thus concentrating on polarization transfer only.
183Using the full matrix takes now all polarization effects into account.
184
185
186The transformation matrix, i.e.\ the dependence of the mean
187polarization of final state particles, can be derived from the
188asymmetry of the differential cross section w.r.t.\ this particular
189polarization. 
190Where the asymmetry is defined as usual by
191\begin{equation}
192  A = \frac{\sigma(+1)-\sigma(-1)}{\sigma(+1)+\sigma(-1)} \;.
193\end{equation}
194The mean final state polarizations can be determined coefficient by
195coefficient.
196%
197%For instance the components of the mean Stokes vector
198%% following eq.\ \eqref{eq:diffxsec}
199%$\bvec{\hat\xi}^{(1)}$ of the first final state particle is obtained
200%by
201%\begin{equation}
202%  \hat\xi^{(2)}_1 = \frac{\sigma(\bvec{\zeta}^{(1)},\bvec{\zeta}^{(2)},
203%\bvec{\xi}^{(1)}=\mbox{\small$\left(\!\!\begin{array}{c}+1\\0\\0\end{array}\!\!\right)$},
204%\bvec{\xi}^{(2)}=\mbox{\small$\left(\!\!\begin{array}{c}0\\0\\0\end{array}\!\!\right)$})
205%-
206%\sigma(\bvec{\zeta}^{(1)},\bvec{\zeta}^{(2)},
207%\bvec{\xi}^{(1)}=\mbox{\small$\left(\!\!\begin{array}{c}-1\\0\\0\end{array}\!\!\right)$},
208%\bvec{\xi}^{(2)}=\mbox{\small$\left(\!\!\begin{array}{c}0\\0\\0\end{array}\!\!\right)$})
209%}{\sigma(\dots)+\sigma(\dots)}
210%\end{equation}
211%
212%\begin{equation}
213%  \hat\xi^{(2)}_2 = \frac{\sigma(\bvec{\zeta}^{(1)},\bvec{\zeta}^{(2)},
214%\bvec{\xi}^{(1)}=\mbox{\small$\left(\!\!\begin{array}{c}0\\+1\\0\end{array}\!\!\right)$},
215%\bvec{\xi}^{(2)}=\mbox{\small$\left(\!\!\begin{array}{c}0\\0\\0\end{array}\!\!\right)$})
216%-
217%\sigma(\bvec{\zeta}^{(1)},\bvec{\zeta}^{(2)},
218%\bvec{\xi}^{(1)}=\mbox{\small$\left(\!\!\begin{array}{c}0\\-1\\0\end{array}\!\!\right)$},
219%\bvec{\xi}^{(2)}=\mbox{\small$\left(\!\!\begin{array}{c}0\\0\\0\end{array}\!\!\right)$})
220%}{\sigma(\dots)+\sigma(\dots)}
221%\end{equation}
222%
223%\begin{equation}
224%  \hat\xi^{(2)}_3 = \frac{\sigma(\bvec{\zeta}^{(1)},\bvec{\zeta}^{(2)},
225%\bvec{\xi}^{(1)}=\mbox{\small$\left(\!\!\begin{array}{c}0\\0\\+1\end{array}\!\!\right)$},
226%\bvec{\xi}^{(2)}=\mbox{\small$\left(\!\!\begin{array}{c}0\\0\\0\end{array}\!\!\right)$})
227%-
228%\sigma(\bvec{\zeta}^{(1)},\bvec{\zeta}^{(2)},
229%\bvec{\xi}^{(1)}=\mbox{\small$\left(\!\!\begin{array}{c}0\\0\\-1\end{array}\!\!\right)$},
230%\bvec{\xi}^{(2)}=\mbox{\small$\left(\!\!\begin{array}{c}0\\0\\0\end{array}\!\!\right)$})
231%}{\sigma(\dots)+\sigma(\dots)}
232%\end{equation}
233%
234
235In general, the differential cross section is a linear function
236of the polarizations, i.e.
237\begin{eqnarray}
238  \frac{d\sigma(\bvec{\zeta}^{(1)},\bvec{\zeta}^{(2)},\bvec{\xi}^{(1)},\bvec{\xi}^{(2)})}{d\Omega} &=& 
239     \Phi_{(\zeta^{(1)},\zeta^{(2)})}   
240     + \bvec{A}_{(\zeta^{(1)},\zeta^{(2)})}   \cdot\bvec{\xi}^{(1)} 
241     + \bvec{B}_{(\zeta^{(1)},\zeta^{(2)})}   \cdot\bvec{\xi}^{(2)}   \nonumber\\
242    && \quad \quad \quad 
243     +\, {\bvec{\xi}^{(1)}}^T M_{(\zeta^{(1)},\zeta^{(2)})}    \,\bvec{\xi}^{(2)}
244\end{eqnarray}
245In this form, the mean polarization of the final state can be read off
246easily, and one obtains
247\begin{eqnarray}
248\langle\bvec{\xi}^{(1)}\rangle &=& \frac{1}{\Phi_{(\zeta^{(1)},\zeta^{(2)})}}
249 \bvec{A}_{(\zeta^{(1)},\zeta^{(2)})} \;\; \mbox{and} \\
250\langle\bvec{\xi}^{(2)}\rangle &=& \frac{1}{\Phi_{(\zeta^{(1)},\zeta^{(2)})}}
251 \bvec{B}_{(\zeta^{(1)},\zeta^{(2)})} \;.
252\end{eqnarray}
253
254Note, that the {\em mean} polarization states do not depend on the
255correlation matrix $M_{(\zeta^{(1)},\zeta^{(2)})}$. In order to account for
256correlation one has to generate  {\em single} particle Stokes
257vector explicitly, i.e.\ on an event by event basis. However, this
258implementation generates {\em mean} polarization states, and neglects
259correlation effects.
260
261%\newpage
262\subsection{Coordinate transformations}
263
264\begin{figure}[h!]
265\centerline{\includegraphics[width=8.cm]{electromagnetic/standard/plots/frames.eps}}
266\caption{\label{pol.interframe} 
267  The {\em interaction frame} and the {\em particle frames} for the
268  example of Compton scattering. The momenta of all participating
269  particle lie in the $x$-$z$-plane, the scattering plane. The
270  incoming photon gives the $z$ direction. The outgoing photon is
271  defined as {\em particle 1} and gives the $x$-direction, perpendicular to
272  the $z$-axis. The $y$-axis is then perpendicular to the scattering
273  plane and completes the definition of a right handed coordinate
274  system called {\em interaction frame}.
275  The {\em particle frame} is defined by the Geant4 routine   
276  {\tt G4ThreeMomemtum::rotateUz()}.} 
277\end{figure}
278
279Three different coordinate systems are used in the evaluation of
280polarization states:
281\begin{itemize}
282\item {\bf World frame}
283%\item[]
284
285The geometry of the target, and the momenta of all particles
286  in Geant4 are noted in the world frame $X$, $Y$, $Z$ (the {\em global
287  reference frame}, GRF). It is the basis of the calculation of any
288  other coordinate system.
289\item {\bf Particle frame}
290%\item[]
291
292Each particle is carrying its own coordinate system.
293  In this system the direction of motion coincides with the
294  $z$-direction. Geant4 provides a transformation from any particle
295  frame to the World frame by the method
296  {\tt G4ThreeMomemtum::rotateUz()}. Thus, the $y$-axis of the
297  {\em particle reference frame} (PRF) lies in the $X$-$Y$-plane of
298  the world frame.
299 
300  The Stokes vector of any moving particle is defined w.r.t. the
301  corresponding particle frame.
302  Particles at rest (e.g.\ electrons of a media) use the world frame as
303  particle frame.
304\item {\bf Interaction frame}
305%\item[]
306
307 For the evaluation of the polarization transfer another
308 coordinate system is used, defined by the scattering plane, cf.\
309fig.\ \ref{pol.interframe}. There the
310 $z$-axis is defined by the direction of motion of the incoming
311 particle. The scattering plane is spanned by the $z$-axis and the
312 $x$-axis, in a way, that the direction of {\em particle~1} has a
313 positive $x$ component. The definition of {\em particle~1} depends on
314 the process, for instance in Compton scattering, the outgoing photon
315 is referred as {\em particle~1}\footnote{Note, for an incoming
316   particle travelling on the $Z$-axis (of GRF), the $y$-axis of the PRF
317   of both outgoing particles is parallel to the $y$-axis of the
318   {\em interaction frame}.}.
319\end{itemize}
320
321All frames are right handed.
322
323
324\subsection{Polarized beam and material}
325
326Polarization of beam particles is well established. It can be used for
327simulating low-energy Compton scattering of linear polarized
328photons. The interpretation as Stokes vector allows now the usage in a
329more general framework.
330%
331The polarization state of a (initial) beam particle can be fixed
332using standard the ParticleGunMessenger class. For example, the class {\tt 
333G4ParticleGun} provides the method {\tt SetParticlePolarization()},
334which is usually accessable via
335\begin{verbatim}
336  /gun/polarization <Sx> <Sy> <Sz>
337\end{verbatim}
338in a macro file.
339
340In addition for the simulation of polarized media, a possibility
341to assign Stokes vectors to physical volumes is provided by a new
342class, the so-called {\em G4PolarizationManager}.   
343%It also provides some helper routines for the evaluation of Stokes
344%vectors in different frames of reference.
345%
346The procedure to assign a polarization vector to a media, is done
347during the {\em detector construction}. There the {\em
348logical volumes} with certain polarization are made known to
349{\em polarization manager}. One example {\tt DetectorConstruction}
350might look like follows:
351
352\begin{verbatim}
353  G4double Targetthickness = .010*mm;
354  G4double Targetradius    = 2.5*mm;
355
356  G4Tubs *solidTarget =
357    new G4Tubs("solidTarget",
358               0.0,
359               Targetradius,
360               Targetthickness/2,
361               0.0*deg,
362               360.0*deg );
363
364  G4LogicalVolume * logicalTarget =
365    new G4LogicalVolume(solidTarget,
366                        iron,
367                        "logicalTarget",
368                        0,0,0);
369
370  G4VPhysicalVolume *  physicalTarget =
371    new G4PVPlacement(0,G4ThreeVector(0.*mm, 0.*mm, 0.*mm),
372                      logicalTarget,
373                      "physicalTarget",
374                      worldLogical,
375                      false,
376                      0);
377
378  G4PolarizationManager * polMgr = G4PolarizationManager::GetInstance();
379  polMgr->SetVolumePolarization(logicalTarget,G4ThreeVector(0.,0.,0.08));
380\end{verbatim}
381Once a logical volume is known to the {\tt G4PolarizationManager}, its
382polarization vector can be accessed from a macro file by its name,
383e.g.\ the polarization of the logical volume called ``logicalTarget''
384can be changed via
385\begin{verbatim}
386  /polarization/volume/set logicalTarget 0. 0. -0.08
387\end{verbatim}
388Note, the polarization of a material is stated in the world frame.
389
390\subsection{Status of this document}
39120.11.06 created by A.Sch{\"a}licke\\
392
393\begin{latexonly}
394
395\begin{thebibliography}{10}
396
397\bibitem{polIntro:McMaster:1961}
398W.~H.~McMaster, Rev.\ Mod.\ Phys.\ {\bf 33} (1961) 8; and references therein.
399
400\bibitem{polIntro:Laihem:thesis}
401K.~Laihem, PhD thesis, Humboldt University Berlin, Germany, (2007).
402
403%%EGS
404\bibitem{polIntro:Nelson:1985ec}
405W.~R.~Nelson, H.~Hirayama, D.~W.~O.\ Rogers,
406%``The Egs4 Code System,''
407SLAC-R-0265.
408
409\bibitem{polIntro:Floettmann:thesis}
410K.~Fl\"ottmann, PhD thesis, DESY Hamburg (1993); DESY-93-161.
411
412%kek extension
413\bibitem{polIntro:Namito:1993sv}
414Y.~Namito, S.~Ban, H.~Hirayama,
415%``Implementation of linearly polarized photon scattering into the EGS4 code,''
416Nucl.\ Instrum.\ Meth.\ A {\bf 332} (1993) 277.
417
418\bibitem{polIntro:Liu:2000ey}
419J.~C.~Liu, T.~Kotseroglou, W.~R.~Nelson, D.~C.~Schultz,
420%``Polarization study for NLC positron source using EGS4,''
421SLAC-PUB-8477.
422%Geant3
423\bibitem{polIntro:Brun:1985ps}
424R.~Brun, M.~Caillat, M.~Maire, G.~N.~Patrick, L.~Urban,
425%``The Geant3 Electromagnetic Shower Program And A Comparison With The Egs3
426%Code,''
427CERN-DD/85/1.
428
429%% E166
430\bibitem{polIntro:Alexander:2003fh}
431G.~Alexander {\it et al.},
432%``Undulator-based production of polarized positrons: A proposal for
433%  the  50-GeV beam in the FFTB,''
434SLAC-TN-04-018, SLAC-PROPOSAL-E-166.
435
436\bibitem{polIntro:Hoogduin:thesis}
437J.~Hoogduin, PhD thesis, Rijksuniversiteit Groningen (1997).
438
439\bibitem{polIntro:Stokes:1852}
440G.~Stokes,
441Trans.\ Cambridge Phil.\ Soc.\  {\bf 9} (1852) 399.
442
443
444\end{thebibliography}
445
446\end{latexonly}
447
448\begin{htmlonly}
449
450\begin{enumerate}{10}
451\item
452W.~H.~McMaster, Rev.\ Mod.\ Phys.\ {\bf 33} (1961) 8; and references therein.
453
454\item
455K.~Laihem, PhD thesis, Humboldt University Berlin, Germany, (2007).
456
457%%EGS
458\item
459W.~R.~Nelson, H.~Hirayama, D.~W.~O.\ Rogers,
460%``The Egs4 Code System,''
461SLAC-R-0265.
462
463\item
464K.~Fl\"ottmann, PhD thesis, DESY Hamburg (1993); DESY-93-161.
465
466%kek extension
467\item
468Y.~Namito, S.~Ban, H.~Hirayama,
469%``Implementation of linearly polarized photon scattering into the EGS4 code,''
470Nucl.\ Instrum.\ Meth.\ A {\bf 332} (1993) 277.
471
472\item
473J.~C.~Liu, T.~Kotseroglou, W.~R.~Nelson, D.~C.~Schultz,
474%``Polarization study for NLC positron source using EGS4,''
475SLAC-PUB-8477.
476%Geant3
477\item
478R.~Brun, M.~Caillat, M.~Maire, G.~N.~Patrick, L.~Urban,
479%``The Geant3 Electromagnetic Shower Program And A Comparison With The Egs3
480%Code,''
481CERN-DD/85/1.
482
483%% E166
484\item
485G.~Alexander {\it et al.},
486%``Undulator-based production of polarized positrons: A proposal for
487%  the  50-GeV beam in the FFTB,''
488SLAC-TN-04-018, SLAC-PROPOSAL-E-166.
489
490\item
491J.~Hoogduin, PhD thesis, Rijksuniversiteit Groningen (1997).
492
493\item
494G.~Stokes,
495Trans.\ Cambridge Phil.\ Soc.\  {\bf 9} (1852) 399.
496
497\end{enumerate}
498
499\end{htmlonly}
500
501
502
503
504% ======================================================================
505\newcommand{\Mvariable}[1]{r_e}
506
507\newpage
508\section{Ionization}\label{sec:polarizedIonization}
509\subsection{Method}
510The class {\em G4ePolarizedIonization} provides continuous and
511discrete energy losses of polarized electrons and positrons in a
512material. It evaluates polarization transfer and -- if the material
513is polarized -- asymmetries in the explicit delta rays production.
514The implementation baseline follows the approach derived for the
515class {\em G4eIonization} described in sections             
516\ref{en_loss} and \ref{sec:em.eion}
517For continuous energy losses the effects of a polarized beam or
518target are negligible provided the separation cut $T_{\rm cut}$ is
519small, and are therefore not considered separately. On the other
520hand, in the explicit production of delta rays by M{\o}ller or
521Bhabha scattering, the effects of polarization on total cross
522section and mean free path, on distribution of final state particles
523and the average polarization of final state particles are taken into
524account.
525
526% ----------------------------------------------------------------------
527
528\subsection{Total cross section and mean free path}
529
530Kinematics of Bhabha and M{\o}ller scattering is fixed by initial
531energy
532\begin{equation}
533  \gamma=\frac{E_{k_1}}{m c^2}% =\frac{s}{2m^2}-1
534\end{equation}
535and variable
536\begin{equation}
537  \epsilon = \frac{E_{p_2}-m c^2}{E_{k_1}-m c^2},
538\end{equation}
539which is the part of kinetic energy of initial particle carried out by
540scatter. Lower kinematic limit for $\epsilon$ is $0$, but in order
541to avoid divergencies in both total and differential cross sections
542one sets
543\begin{equation}
544   \epsilon_{min}= x = \frac{T_{min}}{E_{k_1}-mc^2},
545\end{equation}
546where $T_{min}$ has meaning of minimal kinetic energy of secondary
547electron. And, $\epsilon_{\rm max}=1(1/2)$ for Bhabha(M{\o}ller)
548scatterings. 
549
550% ----------------------------------------------------------------------
551\subsubsection{Total M{\o}ller cross section}
552
553The total cross section of the polarized M{\o}ller scattering can be expressed as follows
554\begin{equation}\label{totalMoller}
555\sigma^M_{pol}=\frac{2\pi\gamma^2 r_e^2}{(\gamma-1)^2(\gamma+1)}\left[
556  \sigma^M_0 + \zeta_3^{(1)}\zeta_3^{(2)}\sigma^M_L
557            + \left(\zeta_1^{(1)}\zeta_1^{(2)}+\zeta_2^{(1)}\zeta_2^{(2)}\right)\sigma^M_T\right],
558\end{equation}
559  where the $r_e$ is classical electron radius, and
560\begin{eqnarray}
561\sigma^M_0&=&
562  - \frac{1}{1 - x} + \frac{1}{x} 
563  - \frac{{\left( \gamma - 1 \right)}^2}{{\gamma}^2} 
564    \left(\frac{1}{2} - x \right)
565  +  \frac{ 2 - 4\,\gamma }{2\,{\gamma}^2}
566 \,\ln \left(\frac{1-x}{x}\right)
567\nonumber\\
568\sigma^M_L&=&
569\frac{ \left( -3 + 2\,\gamma + {\gamma}^2 \right)
570      \,\left( 1 - 2\,x \right) }{2\, {\gamma}^2} 
571  + \frac{2\,\gamma\,\left( -1 + 2\,\gamma \right)}{2\,
572    {\gamma}^2} \,\ln \left(\frac{1-x}{x}\right)
573\nonumber\\
574\sigma^M_T&=&
575\frac{2\,\left( \gamma - 1 \right) \,\left( 2\,x  -1  \right)}{2\,{\gamma}^2}
576  + \frac{
577    \left( 1 - 3\,\gamma \right) }{2\,{\gamma}^2} \,\ln \left(\frac{1-x}{x}\right)
578\label{mollertotal}
579\end{eqnarray}
580
581% ----------------------------------------------------------------------
582\subsubsection{Total Bhabha cross section}
583
584The total cross section of the polarized Bhabha scattering can be expressed as follows
585\begin{equation}\label{totalBhabha}
586\sigma^B_{pol}=\frac{2\pi r_e^2}{\gamma-1}
587\left[
588\sigma^B_0 + \zeta_3^{(1)}\zeta_3^{(2)}\sigma^B_L + \left(\zeta_1^{(1)}\zeta_1^{(2)} + \zeta_2^{(1)}\zeta_2^{(2)}\right)\sigma^B_T
589\right],
590\end{equation}
591where
592\begin{eqnarray}
593\sigma^B_0&=&
594\frac{1 - x}{2\,\left( \gamma - 1 \right) \,x} +
595  \frac{2\,\left( -1 + 3\,x - 6\,x^2 + 4\,x^3 \right) }
596   {3\,{\left( 1 + \gamma \right) }^3}
597    \nonumber\\
598  &+&\frac{-1 - 5\,x + 12\,x^2 - 10\,x^3 + 4\,x^4}{2\,\left( 1 + \gamma \right) \,x}
599 + \frac{-3 - x + 8\,x^2 - 4\,x^3 - \ln (x)}{{\left( 1 + \gamma \right) }^2}
600    \nonumber\\
601  &+&\frac{3 + 4\,x - 9\,x^2 + 3\,x^3 - x^4 + 6\,x\,\ln (x)}{3\,x}
602    \nonumber\\
603  \sigma^B_L&=&
604\frac{2\,\left( 1 - 3\,x + 6\,x^2 - 4\,x^3 \right) }{3\,{\left( 1 + \gamma \right) }^3} +
605  \frac{-14 + 15\,x - 3\,x^2 + 2\,x^3 - 9\,\ln (x)}{3\,\left( 1 + \gamma \right) }
606\nonumber\\
607  &+&\frac{5 + 3\,x - 12\,x^2 + 4\,x^3 + 3\,\ln (x)}{3\,{\left( 1 + \gamma \right) }^2} +
608  \frac{7 - 9\,x + 3\,x^2 - x^3 + 6\,\ln (x)}{3}
609\nonumber\\
610\sigma^B_T&=&
611\frac{2\,\left( -1 + 3\,x - 6\,x^2 + 4\,x^3 \right) }{3\,{\left( 1 + \gamma \right) }^3} +
612  \frac{-7 - 3\,x + 18\,x^2 - 8\,x^3 - 3\,\ln (x)}{3\,{\left( 1 + \gamma \right) }^2}
613\nonumber\\
614  &+&\frac{5 + 3\,x - 12\,x^2 + 4\,x^3 + 9\,\ln (x)}{6\,\left( 1 + \gamma \right) }
615\end{eqnarray}
616
617% ----------------------------------------------------------------------
618\subsubsection{Mean free path}
619
620With the help of the total polarized  M{\o}ller cross section
621one can define a longitudinal asymmetry $A^M_L$ and the transverse
622asymmetry $A^M_T$, by
623
624\begin{tabular}{ccc}
625 $ A^M_L = \displaystyle \frac{\sigma^M_L}{\sigma^M_0\quad$ & and &
626 $\quad A^M_T = \displaystyle \frac{\sigma^M_T}{\sigma^M_0}\;$.
627\end{tabular}
628
629Similarly, using the polarized Bhabha cross section one can introduce a
630longitudinal asymmetry $A^B_L$ and the transverse asymmetry $A^B_T$
631via
632
633\begin{tabular}{ccc}
634 $ A^B_L = \displaystyle \frac{\sigma^B_L}{\sigma^B_0\quad$ & and &
635 $\quad A^B_T = \displaystyle \frac{\sigma^B_T}{\sigma^B_0}\;$.
636\end{tabular}
637
638These asymmetries are depicted in figures \ref{pol.moller1} and
639\ref{pol.bhabha1} respectively.
640
641If both beam and target are polarized the mean free path as defined in
642section \ref{sec:em.eion} has to be modified. In the class {\em
643G4ePolarizedIonization} the polarized mean free path $\lambda^{\rm
644pol}$ is derived from the unpolarized mean free path $\lambda^{\rm
645unpol}$ via
646\begin{equation}
647  \lambda^{\rm pol} = \frac{\lambda^{\rm unpol}}{1 +
648\zeta_3^{(1)}\zeta_3^{(2)}\, A_L +
649\left(\zeta_1^{(1)}\zeta_1^{(2)}+\zeta_2^{(1)}\zeta_2^{(2)}\right) \,A_T}
650\end{equation}
651
652%
653\begin{figure}[t]
654\begin{center}
655  \includegraphics[width=6.5cm]{electromagnetic/standard/plots/MollerTA1.eps}
656  \includegraphics[width=6.5cm]{electromagnetic/standard/plots/MollerTA2.eps}
657\end{center}
658\caption{\label{pol.moller1}M{\o}ller total cross section
659asymmetries depending on the total energy of the incoming
660electron, with a cut-off $T_{\rm cut}= 1 {\rm keV}$. Transverse
661asymmetry is plotted in blue, longitudinal asymmetry in red. Left
662part, between 0.5 MeV and 2 MeV, right part up to 10 MeV.}
663%\end{figure}   
664%
665%\begin{figure}[t]
666\begin{center}
667  \includegraphics[width=6.5cm]{electromagnetic/standard/plots/BhabhaTA1.eps}
668  \includegraphics[width=6.5cm]{electromagnetic/standard/plots/BhabhaTA2.eps}
669\end{center}
670\caption{\label{pol.bhabha1}Bhabha total cross section
671asymmetries depending on the total energy of the incoming
672positron, with a cut-off $T_{\rm cut}= 1 {\rm keV}$. Transverse
673asymmetry is plotted in blue, longitudinal asymmetry in red. Left
674part, between 0.5 MeV and 2 MeV, right part up to 10 MeV.}
675\end{figure}
676
677
678
679
680% ----------------------------------------------------------------------
681\subsection{Sampling the final state}
682
683\subsubsection{Differential cross section}
684
685The polarized differential cross section is rather complicated,
686the full result can be found in \cite{polIoni:Star:2006,polIoni:Ford:1957,polIoni:Stehle:1957}.
687In {\em G4PolarizedMollerCrossSection} the complete result is
688available taking all mass effects into account, only binding effects
689are neglected. 
690Here we state only the ultra-relativistic approximation (URA), to show
691the general dependencies.
692\begin{eqnarray}
693&&\frac{d\sigma_{URA}^M}{d\epsilon d\varphi}=
694\frac{{{r_\epsilon}}^2}{ \gamma + 1} \times
695\nonumber\\
696&&\Bigg[
697\frac{{\left( 1 - \epsilon + \epsilon^2 \right) }^2}{4\,{\left( \epsilon - 1 \right) }^2\,\epsilon^2} +
698\zeta_3^{(1)}\zeta_3^{(2)}\frac{2 - \epsilon +
699\epsilon^2}{-4\,\epsilon ( 1 - \epsilon)} +
700\left(\zeta_2^{(1)}\zeta_2^{(2)}  -\zeta_1^{(1)}\zeta_1^{(2)}\right)\frac{1}{4}
701\nonumber\\
702&&+
703  \left(\xi_3^{(1)}\zeta_3^{(1)} - \xi_3^{(2)}\zeta_3^{(2)}\right)
704\frac{1 - \epsilon  + 2\,\epsilon^2}{4\,\left( 1 -  \epsilon  \right) \,\epsilon^2}
705+ \left(\xi_3^{(2)}\zeta_3^{(1)} - \xi_3^{(1)}\zeta_3^{(2)}\right)
706\frac{2 - 3\,\epsilon + 2\,\epsilon^2}{4\,{\left( 1 - \epsilon \right) }^2\,\epsilon}
707   \Bigg] \nonumber\\
708&&
709\end{eqnarray}
710%
711The corresponding cross section for Bhabha cross section is
712implemented in  {\em G4PolarizedBhabhaCrossSection}. In the
713ultra-relativistic approximation it reads
714\begin{eqnarray}
715&&\frac{d\sigma_{URA}^B}{d\epsilon d\varphi}=
716\frac{{{r_\epsilon}}^2}{ \gamma - 1} \times
717\nonumber\\
718&&\Bigg[
719\frac{{\left( 1 - \epsilon + \epsilon^2 \right) }^2}{4\,\epsilon^2} +
720\zeta_3^{(1)}\zeta_3^{(2)}\frac{\left( \epsilon - 1 \right) \,\left( 2 - \epsilon + \epsilon^2 \right) }{4\,\epsilon}
721+\left(\zeta_2^{(1)}\zeta_2^{(2)}  -\zeta_1^{(1)}\zeta_1^{(2)}\right)\frac{(1-\epsilon)^2}{4}
722\nonumber\\
723&&+
724  \left(\xi_3^{(1)}\zeta_3^{(1)} - \xi_3^{(2)}\zeta_3^{(2)}\right)\frac{1 - 2\,\epsilon + 3\,\epsilon^2 - 2\,\epsilon^3}{4\,\epsilon^2}
725+ \left(\xi_3^{(2)}\zeta_3^{(1)} - \xi_3^{(1)}\zeta_3^{(2)}\right)\frac{ 2 - 3\,\epsilon + 2\,\epsilon^2}{4\epsilon}
726   \Bigg] \nonumber\\
727&&
728\end{eqnarray}
729where
730\begin{tabular}[t]{l@{\ = \ }l}
731$r_e$       & classical electron radius       \\
732$\gamma$    & $E_{k_1}/m_e c^2$ \\
733$\epsilon$  & ($E_{p_1}-m_e c^2)/(E_{k_1}-m_e c^2)$  \\                     
734$E_{k_1}$   & energy of the incident electron/positron   \\
735$E_{p_1}$   & energy of the scattered electron/positron  \\
736$m_e c^2$   & electron mass                   \\
737$\bvec{\zeta}^{(1)}$ & Stokes vector of the incoming electron/positron \\
738$\bvec{\zeta}^{(2)}$ & Stokes vector of the target electron \\
739$\bvec{\xi}^{(1)}$   & Stokes vector of the outgoing electron/positron \\
740$\bvec{\xi}^{(2)}$   & Stokes vector of the outgoing (2nd) electron .
741\end{tabular}
742
743\subsubsection{Sampling}
744
745The delta ray is sampled according to methods discussed in Chapter
7462. After exploitation of the symmetry in the M{\o}ller cross section
747under exchanging $\epsilon$ versus $(1-\epsilon)$, the differential
748cross section can be approximated by a simple function $f^M(\epsilon)$:
749\begin{equation}
750   f^M(\epsilon) = \frac{1}{\epsilon^2} \frac{\epsilon_0}{1-2\epsilon_0}
751\end{equation}
752with the kinematic limits given by
753\begin{equation}
754  \epsilon_0 = \frac{T_{\rm cut}}{E_{k_1}-m_e c^2} \le \epsilon \le
755\frac{1}{2}
756\end{equation}
757A similar function $f^B(\epsilon)$ can be found for Bhabha scattering:
758\begin{equation}
759   f^B(\epsilon) = \frac{1}{\epsilon^2} \frac{\epsilon_0}{1-\epsilon_0}
760\end{equation}
761with the kinematic limits given by
762\begin{equation}
763  \epsilon_0 = \frac{T_{\rm cut}}{E_{k_1}-m_e c^2} \le \epsilon \le 1
764\end{equation}
765
766The kinematic of the delta ray production is constructed by the
767following steps:
768\begin{enumerate}
769   \item $\epsilon$ is sampled from $f(\epsilon)$
770   \item calculate the differential cross section, depending on the
771         initial polarizations $\bvec{\zeta}^{(1)}$ and $\bvec{\zeta}^{(2)}$.
772   \item $\epsilon$ is accepted with the probability defined by ratio
773         of the differential cross section over the approximation
774         function.
775   \item The $\varphi$ is diced uniformly.
776   \item $\varphi$ is determined from the differential cross section,
777         depending on the initial polarizations $\bvec{\zeta}^{(1)}$ and $\bvec{\zeta}^{(2)}$
778\end{enumerate}
779Note, for initial states without transverse polarization components, the
780$\varphi$ distribution is always uniform.
781In figure \ref{pol.moller2} the asymmetries indicate the influence of
782polarization. In general the effect is largest around
783$\epsilon=\frac{1}{2}$.
784%
785%\begin{figure}[ht]
786%\includegraphics[scale=0.5]{electromagnetic/standard/plots/MollerXS.eps}
787%\caption{M{\o}ller differential cross section in arbitrary units. Black - unpolarized, Red - (+-),Blue (++).
788%This cross section is symmetric around point $\epsilon=1/2$.
789%}
790%\end{figure}
791%\begin{figure}[ht]
792%\includegraphics[scale=0.5]{electromagnetic/standard/plots/BhabhaXS.eps}
793%\caption{Bhabha differential cross section in arbitrary units. Black - unpolarized, Red - (+-),Blue (++)}
794%\end{figure}
795%
796\begin{figure}[ht]
797\begin{center}
798\includegraphics[width=6.5cm]{electromagnetic/standard/plots/MollerAsym.eps}
799\includegraphics[width=6.5cm]{electromagnetic/standard/plots/BhabhaAsym.eps}
800\end{center}
801%\caption{M{\o}ller differential cross section asymmetries in\%.
802%Red - ZZ, Gren - XX, Blue - YY, LightBlue -ZX}
803\caption{\label{pol.moller2}Differential cross section asymmetries in\% for M{\o}ller
804(left) and Bhabha (right) scattering ( red - $A_{ZZ}(\epsilon)$,
805 green - $A_{XX}(\epsilon)$, blue - $A_{YY}(\epsilon)$, lightblue - $A_{ZX}(\epsilon)$)}
806\end{figure}
807
808After both $\phi$ and $\epsilon$ are known, the kinematic can be
809constructed fully. Using momentum conservation the momenta of the
810scattered incident particle and the ejected electron are constructed
811in global coordinate system.
812
813\subsubsection{Polarization transfer}
814
815After the kinematics is fixed the polarization properties of the
816outgoing particles are determined. Using the dependence of
817the differential cross section on the final state polarization a mean
818polarization is calculated according to method described in section
819\ref{sec:pol.intro}.
820
821The resulting polarization transfer functions $\xi^{(1,2)}_3(\epsilon)$
822are depicted in figures \ref{pol.moller3} and \ref{pol.bhabha3}.
823
824\begin{figure}[ht]
825\includegraphics[width=6.5cm]{electromagnetic/standard/plots/MollerTransfer1.eps}
826\includegraphics[width=6.5cm]{electromagnetic/standard/plots/MollerTransfer2.eps}
827\caption{\label{pol.moller3}Polarization transfer functions in
828M{\o}ller scattering. Longitudinal polarization
829$\xi^{(2)}_3$ of electron with energy $E_{p_2}$ in blue; longitudinal
830polarization $\xi^{(1)}_3$ of second electron in red. Kinetic energy of incoming electron $T_{k_1} = 10 {\rm MeV}$}.
831\end{figure}
832
833\begin{figure}[ht]
834\includegraphics[width=6.5cm]{electromagnetic/standard/plots/BhabhaTransfer1.eps}
835\includegraphics[width=6.5cm]{electromagnetic/standard/plots/BhabhaTransfer2.eps}
836\caption{\label{pol.bhabha3}Polarization Transfer in Bhabha scattering.
837Longitudinal polarization
838$\xi^{(2)}_3$ of electron with energy $E_{p_2}$ in blue; longitudinal
839polarization $\xi^{(1)}_3$ of scattered positron. Kinetic energy of incoming positron $T_{k_1} = 10 {\rm MeV}$}.
840\end{figure}
841
842% ----------------------------------------------------------------------
843\subsection{Status of this document}
84420.11.06 created by P.Starovoitov\\
84521.02.07 minor update by A.Sch{\"a}licke\\
846
847\begin{latexonly}
848
849\begin{thebibliography}{9}
850\bibitem{polIoni:Star:2006} P.~Starovoitov {\em et.al.}, in preparation.
851\bibitem{polIoni:Ford:1957}
852G.~W.~Ford, C.~J.~Mullin,
853Phys.~Rev.\ {\bf 108} (1957) 477.
854\bibitem{polIoni:Stehle:1957}
855P.~Stehle,
856Phys.~Rev.\ {\bf 110} (1958) 1458.
857
858\end{thebibliography}
859
860\end{latexonly}
861
862\begin{htmlonly}
863
864\subsection{Bibliography}
865\begin{enumerate}
866\item %{Star:2006}
867 P.~Starovoitov {\em et.al.}, in preparation.
868\item %{Ford:1957}
869G.~W.~Ford, C.~J.~Mullin,
870Phys.~Rev.\ {\bf 108} (1957) 477.
871\item % {Stehle:1957}
872P.~Stehle,
873Phys.~Rev.\ {\bf 110} (1958) 1458.
874\end{enumerate}
875
876\end{htmlonly}
877
878
879\clearpage
880% ======================================================================
881\section{Positron - Electron Annihilation}
882\subsection{Method}
883The class {\em G4eplusPolarizedAnnihilation} simulates
884annihilation of polarized positrons with electrons in a material.
885The implementation baseline follows the approach derived for the class
886{\em  G4eplusAnnihilation} described in section
887\ref{sec:em.annil}.
888It evaluates polarization transfer and -- if the material is polarized --
889asymmetries in the produced photons. Thus, it takes the effects of
890polarization on total cross section and mean free path, on
891distribution of final state photons into account. And
892calculates the average polarization of these generated photons.
893The material electrons are assumed to be free and at rest.
894
895\subsection{Total cross section and mean free path}
896Kinematics of annihilation process is fixed by initial energy
897\begin{equation}
898\gamma=\frac{E_{k_1}}{mc^2}%=\frac{s}{2(mc^2)^2}-1
899\end{equation}
900and variable
901\begin{equation}
902\epsilon = \frac{E_{p_1}}{E_{k_1}+mc^2},
903\end{equation}
904which is the part of total energy available in initial state carried out by first photon.
905This variable has the following kinematical limits
906\begin{equation}
907\frac{1}{2}\left(1-\sqrt{\frac{\gamma-1}{\gamma+1}}\right)\;<\;
908\epsilon
909\;<\;\frac{1}{2}\left(1+\sqrt{\frac{\gamma-1}{\gamma+1}}\right)
910\;.
911\end{equation}
912
913% ----------------------------------------------------------------------
914\subsubsection{Total Cross Section}
915The total cross section of the annihilation of a polarized $e^+e^-$
916pair into two photons could be expressed as follows
917\begin{equation}\label{totalAnnih}
918\sigma^A_{pol}=\frac{\pi r_e^2}{\gamma+1}\left[
919\sigma^A_0 + \zeta_3^{(1)}\zeta_3^{(2)}\sigma^A_L + \left(\zeta_1^{(1)}\zeta_1^{(2)}+\zeta_2^{(1)}\zeta_2^{(2)}\right)\sigma^A_T\right],
920\end{equation}
921where
922\renewcommand{\Mvariable}[1]{\gamma}
923\begin{equation}
924\sigma^A_0=
925\frac{- \left( 3 + \Mvariable{gam} \right) \,{\sqrt{-1 + {\Mvariable{gam}}^2}}   +
926    \left( 1 + \Mvariable{gam}\,\left( 4 + \Mvariable{gam} \right\right) \,
927     \ln (\Mvariable{gam} + {\sqrt{-1 + {\Mvariable{gam}}^2}})}{4\,
928    \left( {\Mvariable{gam}}^2 - 1 \right) }
929\end{equation}
930\begin{equation}
931\sigma^A_L=
932\frac{- {\sqrt{-1 + {\Mvariable{gam}}^2}}\,
933       \left( 5 + \Mvariable{gam}\,\left( 4 + 3\,\Mvariable{gam} \right\right)    +
934    \left( 3 + \Mvariable{gam}\,\left( 7 + \Mvariable{gam} + {\Mvariable{gam}}^2 \right\right) \,
935     \ln (\Mvariable{gam} + {\sqrt{{\Mvariable{gam}}^2-1 }})}{4\,
936    {\left( \Mvariable{gam} -1\right) }^2\,\left( 1 + \Mvariable{gam} \right) }
937\end{equation}
938\begin{equation}
939\sigma^A_T=
940\frac{\left( 5 + \Mvariable{gam} \right) \,{\sqrt{-1 + {\Mvariable{gam}}^2}} -
941    \left( 1 + 5\,\Mvariable{gam} \right) \,\ln (\Mvariable{gam} + {\sqrt{-1 + {\Mvariable{gam}}^2}})}
942    {4\,{\left( -1 + \Mvariable{gam} \right) }^2\,\left( 1 + \Mvariable{gam} \right) }
943\end{equation}
944
945
946\subsubsection{Mean free path}
947
948With the help of the total polarized annihilation cross section
949one can define a longitudinal asymmetry $A^A_L$ and the transverse
950asymmetry $A^A_T$, by
951
952\begin{tabular}{ccc}
953 $ A^A_L = \displaystyle \frac{\sigma^A_L}{\sigma^A_0\quad$ & and &
954 $\quad A^A_T = \displaystyle \frac{\sigma^A_T}{\sigma^A_0}\;$.
955\end{tabular}
956
957These asymmetries are depicted in figure \ref{pol.annihi1}.
958
959If both incident positron and target electron are polarized the mean
960free path as defined in section \ref{sec:em.annil} has to be
961modified. The polarized mean free path $\lambda^{\rm pol}$ is derived
962from the unpolarized mean free path $\lambda^{\rm unpol}$ via
963\begin{equation}
964  \lambda^{\rm pol} = \frac{\lambda^{\rm unpol}}{1 +
965\zeta_3^{(1)}\zeta_3^{(2)}\, A_L +
966\left(\zeta_1^{(1)}\zeta_1^{(2)}+\zeta_2^{(1)}\zeta_2^{(2)}\right) \,A_T}
967\end{equation}
968
969\begin{figure}[ht]
970\begin{center}
971\includegraphics[width=6.5cm]{electromagnetic/standard/plots/AnnihTA1.eps}
972\includegraphics[width=6.5cm]{electromagnetic/standard/plots/AnnihTA2.eps}
973\end{center}
974\caption{\label{pol.annihi1}Annihilation total cross section asymmetries depending on the
975total energy of the incoming positron $E_{k_1}$. The transverse asymmetry
976is shown in blue, the longitudinal asymmetry in red. } 
977\end{figure}
978
979\clearpage
980
981% ----------------------------------------------------------------------
982\subsection{Sampling the final state}
983\subsubsection{Differential Cross Section}
984The fully polarized differential cross section is implemented in the
985class {\em G4PolarizedAnnihilationCrossSection}, which takes all mass
986effects into account, but binding effects are neglected \cite{polAnnihi:Star:2006,polAnnihi:Page:1957}
987In the ultra-relativistic approximation (URA) and concentrating on
988longitudinal polarization states only the cross section is
989rather simple:
990\begin{eqnarray}
991\frac{d\sigma_{URA}^A}{d\epsilon d\varphi} & = &
992\frac{{{r_e}}^2}{ \gamma - 1}  \times 
993\Bigg(
994\frac{1 - 2\,\epsilon + 2\,\epsilon^2}{8\,\epsilon - 8\,\epsilon^2}\left(1 + \zeta_3^{(1)}\zeta_3^{(2)}\right)
995\nonumber\\
996&&\quad\quad
997+ \frac{ \left( 1 - 2\,\epsilon \right) \,\left( \zeta _{3}^{(1)} + \zeta _{3}^{(2)} \right) \,
998      \left( \xi _{3}^{(1)} - \xi _{3}^{(2)} \right}{8\,\left( \epsilon -1  \right) \,\epsilon}
999         \Bigg)
1000\end{eqnarray}
1001%
1002where
1003\begin{tabular}[t]{l@{\ = \ }l}
1004$r_e$       & classical electron radius       \\
1005$\gamma$    & $E_{k_1}/m_e c^2$ \\
1006$E_{k_1}$   & energy of the incident positron   \\
1007$m_e c^2$   & electron mass                   \\
1008$\bvec{\zeta}^{(1)}$ & Stokes vector of the incoming positron \\
1009$\bvec{\zeta}^{(2)}$ & Stokes vector of the target electron \\
1010$\bvec{\xi}^{(1)}$   & Stokes vector of the 1st photon \\
1011$\bvec{\xi}^{(2)}$   & Stokes vector of the 2nd photon .
1012\end{tabular}
1013%
1014\begin{figure}[ht]
1015\begin{center}
1016  \includegraphics[width=9.5cm]{electromagnetic/standard/plots/AnnihXS.eps}
1017\end{center}
1018\caption{Annihilation differential cross section in arbitrary
1019units. Black line corresponds to unpolarized cross section;
1020red line -- to the antiparallel spins of initial particles, and blue line -- to the parallel spins.
1021Kinetic energy of the incoming positron $T_{k_1} = 10 {\rm MeV}$.}
1022\end{figure}
1023
1024\subsubsection{Sampling}
1025
1026The photon energy is sampled according to methods discussed in Chapter
10272. After exploitation of the symmetry in the Annihilation cross section
1028under exchanging $\epsilon$ versus $(1-\epsilon)$, the differential
1029cross section can be approximated by a simple function $f(\epsilon)$:
1030\begin{equation}
1031   f(\epsilon) = \frac{1}{\epsilon}
1032\ln^{-1}\left(\frac{\epsilon_{\rm max}}{\epsilon_{\rm min}}\right)
1033\end{equation}
1034with the kinematic limits given by
1035\begin{eqnarray}
1036\epsilon_{\rm min} &=&
1037\frac{1}{2}\left(1-\sqrt{\frac{\gamma-1}{\gamma+1}}\right)\;, \nonumber\\
1038\epsilon_{\rm max} &=&
1039\frac{1}{2}\left(1+\sqrt{\frac{\gamma-1}{\gamma+1}}\right)
1040\;.
1041\end{eqnarray}
1042
1043The kinematic of the two photon final state is constructed by the
1044following steps:
1045\begin{enumerate}
1046   \item $\epsilon$ is sampled from $f(\epsilon)$
1047   \item calculate the differential cross section, depending on the
1048         initial polarizations $\bvec{\zeta}^{(1)}$ and $\bvec{\zeta}^{(2)}$.
1049   \item $\epsilon$ is accepted with the probability defined by the ratio
1050         of the differential cross section over the approximation
1051         function  $f(\epsilon)$.
1052   \item The $\varphi$ is diced uniformly.
1053   \item $\varphi$ is determined from the differential cross section,
1054         depending on the initial polarizations $\bvec{\zeta}^{(1)}$ and $\bvec{\zeta}^{(2)}$.
1055\end{enumerate}
1056A short overview over the sampling method is given in Chapter 2.
1057In figure \ref{pol.annihi2} the asymmetries indicate the influence of
1058polarization for an 10MeV incoming positron. The actual behavior is
1059very sensitive to the energy of the incoming positron.
1060
1061
1062\begin{figure}[ht]
1063\includegraphics[scale=0.5]{electromagnetic/standard/plots/AnnihAsym.eps}
1064\caption{\label{pol.annihi2}Annihilation differential cross section
1065asymmetries in\%.
1066 Red line corrsponds to $A_{ZZ}(\epsilon)$, green line -- $A_{XX}(\epsilon)$,
1067 blue line -- $A_{YY}(\epsilon)$, lightblue line -- $A_{ZX}(\epsilon)$).
1068 Kinetic energy of the incoming positron $T_{k_1} = 10 {\rm MeV}$.}
1069\end{figure}
1070
1071\subsubsection{Polarization transfer}
1072
1073After the kinematics is fixed the polarization of the
1074outgoing photon is determined. Using the dependence of
1075the differential cross section on the final state polarizations a mean
1076polarization is calculated for each photon according to method
1077described in section \ref{sec:pol.intro}.
1078
1079The resulting polarization transfer functions $\xi^{(1,2)}(\epsilon)$
1080are depicted in figure \ref{pol.annihi3}.
1081
1082\begin{figure}[ht]
1083\includegraphics[width=6.5cm]{electromagnetic/standard/plots/AnnihTransfer1.eps}
1084\includegraphics[width=6.5cm]{electromagnetic/standard/plots/AnnihTransfer2.eps}
1085\caption{\label{pol.annihi3}
1086Polarization Transfer in annihilation process.
1087Blue line corresponds to the circular polarization $\xi_3^{(1)}$ of the photon with energy $m(\gamma + 1)\epsilon$;
1088red line -- circular polarization $\xi_3^{(2)}$ of the photon photon with energy $m(\gamma + 1)(1-\epsilon)$.}
1089\end{figure}
1090
1091\subsection{Annihilation at Rest}
1092
1093The method \verb!AtRestDoIt! treats the special case where a positron
1094comes to rest before annihilating. It generates two photons, each with
1095energy $E_{p_{1/2}}=m c^2$ and an isotropic angular distribution.
1096%Eventhough the asymmetry for annihilation at rest is 100\% (cf.\
1097%figure \ref{pol.annihi1}), there are always unpolarized electrons in
1098%the a material.
1099Starting with the differential cross section for annihilation with
1100positron and electron spins opposed and parallel,
1101respectively,\cite{polAnnihi:Page:1957} 
1102\begin{eqnarray}
1103 d\sigma_1 &=& \sim \frac{(1 - \beta^2) + \beta^2 (1 - \beta^2) (1 -
1104\cos^2\theta)^2}{(1 - \beta^2\cos^2\theta)^2} d \cos\theta \\
1105 d\sigma_2 &=& \sim \frac{\beta^2(1 -
1106\cos^4\theta)}{(1 - \beta^2\cos^2\theta)^2} d \cos\theta \\
1107\end{eqnarray}
1108In the limit $\beta\to0$ the cross section $d\sigma_1$ becomes one,
1109and the cross section $d\sigma_2$ vanishes. For the opposed spin
1110state, the total angular
1111momentum is zero and we have a uniform photon distribution. For the
1112parallel case the total angular momentum is 1. Here the two photon
1113final state is forbidden by angular momentum conservation, and it can
1114be assumed that higher order processes (e.g.\ three photon final
1115state) play a dominant role. However, in reality 100\% polarized
1116electron targets do not exist, consequently there are always electrons
1117with opposite spin, where the positron can annihilate with.
1118% Leading again to a uniform distribution.
1119Final state polarization does not play a role for the decay products
1120of a spin zero state, and can be safely neglected. (Is set to zero)
1121
1122\subsection{Status of this document}
112320.11.06 created by P.Starovoitov\\
112421.02.07 minor update by A.Sch{\"a}licke\\
1125
1126\begin{latexonly}
1127
1128\begin{thebibliography}{9}
1129\bibitem{polAnnihi:Star:2006} P.~Starovoitov {\em et.al.}, in preparation.
1130\bibitem{polAnnihi:Page:1957}
1131L.~A.~Page,
1132%Polarization Effects in the Two-Quantum Annihilation of Positrons
1133Phys.~Rev.\ {\bf 106} (1957) 394-398.
1134\end{thebibliography}
1135
1136\end{latexonly}
1137
1138\begin{htmlonly}
1139
1140\subsection{Bibliography}
1141\begin{enumerate}
1142\item P.~Starovoitov {\em et.al.}, in preparation.
1143\item L.~A.~Page,
1144%Polarization Effects in the Two-Quantum Annihilation of Positrons
1145Phys.~Rev.\ {\bf 106} (1957) 394-398.
1146\end{enumerate}
1147
1148\end{htmlonly}
1149
1150% ======================================================================
1151\clearpage
1152\section{Polarized Compton scattering}
1153\subsection{Method}
1154The class {\em G4PolarizedCompton}  simulates
1155Compton scattering of polarized photons with (possibly polarized)
1156electrons in a material. The implementation follows the approach
1157described for the class {\em G4ComptonScattering} introduced
1158in section \ref{sec:em.compton}.
1159Here the explicit production of a Compton scattered photon and the
1160ejected electron is considered taking the effects of polarization on
1161total cross section and mean free path as well as on the distribution
1162of final state particles into account. Further the average
1163polarizations of the scattered photon and electron are calculated.
1164The material electrons are assumed to be free and at rest.
1165
1166\subsection{Total cross section and mean free path}
1167
1168Kinematics of the Compton process is fixed by the initial energy
1169\begin{equation}
1170X=\frac{E_{k_1}}{mc^2}
1171\end{equation}
1172and the variable
1173\begin{equation}
1174\epsilon = \frac{E_{p_1}}{E_{k_1}},
1175\end{equation}
1176which is the part of total energy avaible in initial state carried out
1177by scattered photon, and the scattering angle
1178\begin{equation}
1179\cos{\theta} = 1 - \frac{1}{X}\left(\frac{1}{\epsilon} - 1\right)
1180\end{equation}
1181The variable $\epsilon$ has the following limits:
1182\begin{equation}
1183\frac{1}{1+2X} \;<\;  \epsilon  \;<\;1
1184\end{equation}
1185
1186
1187% ----------------------------------------------------------------------
1188\subsubsection{Total Cross Section}
1189The total cross section of Compton scattering reads
1190\begin{equation}
1191\sigma^{C}_{pol}=
1192%\frac{\pi \,{{r_e}}^2}{4\,X^2\,{\left( 1 + 2\,X \right) }^2}
1193\frac{\pi \,{{r_e}}^2}{X^2\,{\left( 1 + 2\,X \right) }^2}
1194\left[\sigma^{C}_0 + \zeta^{(1)}_3\zeta^{(2)}_3 \sigma^{C}_L\right]
1195\end{equation}
1196where
1197\begin{equation}
1198\sigma^{C}_0 = \frac{2\,X\,\left( 2 + X\,\left( 1 + X \right) \,\left( 8 + X \right\right)  -
1199    {\left( 1 + 2\,X \right) }^2\,\left( 2 + \left( 2 - X \right) \,X \right) \,
1200     \ln (1 + 2\,X)}{X}
1201\end{equation}
1202and
1203\begin{equation}
1204\sigma^{C}_L = 2\,X\,\left( 1 + X\,\left( 4 + 5\,X \right\right)  -
1205    \left( 1 + X \right) \,{\left( 1 + 2\,X \right) }^2\,\ln (1 + 2\,X)
1206\end{equation}
1207
1208\begin{figure}[ht]
1209\includegraphics[width=6.5cm]{electromagnetic/standard/plots/ComptonTA1.eps}
1210\includegraphics[width=6.5cm]{electromagnetic/standard/plots/ComptonTA2.eps}
1211\caption{\label{pol.compton1}Compton total cross section asymmetry depending on the energy of incoming photon.
1212Left part, between $0$ and $\sim 1$ MeV, right part -- up to 10MeV. }
1213\end{figure}
1214
1215
1216\subsubsection{Mean free path}
1217When simulating the Compton scattering of a photon with an atomic
1218electron, an empirical cross section formula is used, which reproduces
1219the cross section data down to 10 keV (see section
1220\ref{sec:em.compton}). If both, beam and target, are polarized this
1221mean free path has to be corrected.
1222
1223In the class {\em G4ComptonScattering} the polarized mean free path
1224$\lambda^{\rm  pol}$ is defined on the basis of the the unpolarized
1225mean free path $\lambda^{\rm unpol}$ via
1226\begin{equation}
1227  \lambda^{\rm pol} = \frac{\lambda^{\rm unpol}}{1 +
1228\zeta_3^{(1)}\zeta_3^{(2)}\, A^C_L }
1229\end{equation}
1230where
1231\begin{equation}
1232 A^C_L = \displaystyle \frac{\sigma^A_L}{\sigma^A_0} 
1233\end{equation}
1234is the expected asymmetry from the the total polarized Compton
1235cross section given above.
1236This asymmetry is depicted in figure \ref{pol.compton1}.
1237
1238
1239% ----------------------------------------------------------------------
1240\subsection{Sampling the final state}
1241\subsubsection{Differential Compton Cross Section}
1242
1243In the ultra-relativistic approximation the dependence of the
1244differential cross section on the longitudinal/circular degree of
1245polarization is very simple. It reads
1246\begin{eqnarray}
1247&&\frac{d\sigma_{URA}^C}{de d\varphi}=
1248%\frac{{{r_e}}^2 \,Z}{ 4X}
1249\frac{{{r_e}}^2 }{ X}
1250\Bigg(
1251\frac{\epsilon^2 + 1}{2\,\epsilon} +
1252\frac{ \epsilon^2  -1  }{2\,\epsilon} \left(\zeta_3^{(1)}\zeta_3^{(2)} +
1253 \zeta _{3}^{(2)}\,\xi _{3}^{(1)} - \zeta _{3}^{(1)}\,\xi _{3}^{(2)}\right)
1254\nonumber\\
1255&&+\frac{\epsilon^2 + 1}{2\,\epsilon}   \left( \zeta _{3}^{(1)}\,\xi _{3}^{(1)} - \zeta _{3}^{(2)}  \,\xi _{3}^{(2)} \right)
1256   \Bigg)
1257\end{eqnarray}
1258where
1259\begin{tabular}[t]{l@{\ = \ }l}
1260$r_e$       & classical electron radius       \\
1261$X$         & $E_{k_1}/m_e c^2$ \\
1262$E_{k_1}$   & energy of the incident photon   \\
1263$m_e c^2$   & electron mass                   \\
1264\end{tabular}
1265
1266The fully polarized differential cross section is available in the class {\em 
1267G4PolarizedComptonCrossSection}. It takes all mass effects into
1268account, but binding effects are neglected \cite{polCompt:Star:2006,polCompt:Lipps:1954}
1269The cross section dependence on $\epsilon$ for right handed circularly polarized
1270photons and longitudinally polarized electrons is plotted in figure \ref{pol.compton2a}
1271%
1272\begin{figure}
1273\includegraphics[scale=0.5]{electromagnetic/standard/plots/ComptonXS.eps}
1274\caption{\label{pol.compton2a}
1275Compton scattering differential cross section in arbitrary
1276units. Black line corresponds to the unpolarized cross section;
1277red line -- to the antiparallel spins of initial particles, and blue line -- to the parallel spins.
1278Energy of the incoming photon $E_{k_1} = 10 {\rm MeV}$.
1279}
1280\end{figure}
1281%
1282\begin{figure}
1283\includegraphics[scale=0.5]{electromagnetic/standard/plots/ComptonAsym.eps}
1284\caption{\label{pol.compton2}Compton scattering differential cross section asymmetries in\%.
1285Red line corresponds to the asymmetry due to circular photon and longitudinal electron initial state polarization,
1286green line -- due to circular photon and transverse electron initial state polarization,
1287blue line -- due to linear photon and transverse electron initial state polarization.}
1288\end{figure}
1289
1290
1291\subsubsection{Sampling}
1292
1293The photon energy is sampled according to methods discussed in Chapter
12942. The differential cross section can be approximated by a simple
1295function $\Phi(\epsilon)$:
1296\begin{equation}
1297   \Phi(\epsilon) = \frac{1}{\epsilon} + \epsilon
1298\end{equation}
1299with the kinematic limits given by
1300\begin{eqnarray}
1301 \epsilon_{\rm min} &=& \frac{1}{1+2X} \\ 
1302 \epsilon_{\rm max} &=& 1
1303\end{eqnarray}
1304
1305
1306
1307
1308The kinematic of the scattered photon is constructed by the
1309following steps:
1310\begin{enumerate}
1311   \item $\epsilon$ is sampled from $\Phi(\epsilon)$
1312   \item calculate the differential cross section, depending on the
1313         initial polarizations $\bvec{\zeta}^{(1)}$ and $\bvec{\zeta}^{(2)}$, which
1314         the correct normalization.
1315   \item $\epsilon$ is accepted with the probability defined by ratio
1316         of the differential cross section over the approximation
1317         function.
1318   \item The $\varphi$ is diced uniformly.
1319   \item $\varphi$ is determined from the differential cross section,
1320         depending on the initial polarizations $\bvec{\zeta}^{(1)}$ and $\bvec{\zeta}^{(2)}$.
1321\end{enumerate}
1322In figure \ref{pol.compton2} the asymmetries indicate the influence of
1323polarization for an 10MeV incoming positron. The actual behavior is
1324very sensitive to energy of the incoming positron.
1325
1326\subsubsection{Polarization transfer}
1327
1328After the kinematics is fixed the polarization of the
1329outgoing photon is determined. Using the dependence of
1330the differential cross section on the final state polarizations a mean
1331polarization is calculated for each photon according to the method
1332described in section \ref{sec:pol.intro}.
1333
1334The resulting polarization transfer functions $\xi^{(1,2)}(\epsilon)$
1335are depicted in figure \ref{pol.compton3}.
1336
1337\begin{figure}[ht]
1338\includegraphics[width=6.5cm]{electromagnetic/standard/plots/ComptonTransfer1.eps}
1339\includegraphics[width=6.5cm]{electromagnetic/standard/plots/ComptonTransfer2.eps}
1340\caption{\label{pol.compton3} Polarization Transfer in Compton scattering.
1341Blue line corresponds to the longitudinal polarization $\xi_3^{(2)}$ of the electron,
1342red line -- circular polarization $\xi_3^{(1)}$ of the photon.}
1343\end{figure}
1344
1345\subsection{Status of this document}
134620.11.06 created by P.Starovoitov\\
134721.02.07 corrected cross section and some minor update by A.Sch{\"a}licke\\
1348
1349\begin{latexonly}
1350
1351\begin{thebibliography}{9}
1352\bibitem{polCompt:Star:2006} P.~Starovoitov {\em et.al.}, in preparation.
1353%\bibitem{polCompt:Stokes:1852}
1354%G.~Stokes, Trans.\ Cambridge Phil.\ Soc.\  {\bf 9} (1852) 399.
1355%
1356%\bibitem{polCompt:McMaster:1961}
1357%W.~H.~McMaster, Rev.\ Mod.\ Phys.\ {\bf 33} (1961) 8; and references therein.
1358\bibitem{polCompt:Lipps:1954}
1359F.W.~Lipps, H.A.~Tolhoek,
1360%Polarization Phenomena of Electrons and Photons I,
1361Physica {\bf 20}  (1954) 85;
1362F.W.~Lipps, H.A.~Tolhoek,
1363%Polarization Phenomena of Electrons and Photons II,
1364Physica {\bf 20} (1954) 395.
1365
1366\end{thebibliography}
1367
1368\end{latexonly}
1369
1370\begin{htmlonly}
1371
1372\subsection{Bibliography}
1373\begin{enumerate}
1374\item P.~Starovoitov {\em et.al.}, in preparation.
1375\item
1376F.W.~Lipps, H.A.~Tolhoek,
1377%Polarization Phenomena of Electrons and Photons I,
1378Physica {\bf 20}  (1954) 85;
1379F.W.~Lipps, H.A.~Tolhoek,
1380%Polarization Phenomena of Electrons and Photons II,
1381Physica {\bf 20} (1954) 395.
1382\end{enumerate}
1383
1384\end{htmlonly}
1385
1386
1387\newpage
1388\section{Polarized Bremsstrahlung for electron and positron}\label{sec:pol.bremsstrahlung}
1389\subsection{Method}
1390
1391The polarized version of Bremsstrahlung is based on the unpolarized
1392cross section. Energy loss, mean free path, and distribution of
1393explicitly generated final state particles are treated by the
1394unpolarized version {\em G4eBremsstrahlung}. For details consult
1395section \ref{sec:em.ebrem}.
1396
1397The remaining task is to attribute polarization vectors to the
1398generated final state particles, which is discussed in the following.
1399
1400\subsection{Polarization in gamma conversion and brems\-strahlung}
1401
1402Gamma conversion and bremsstrahlung are cross-symmetric processes
1403(i.e. the Feynman diagram for electron bremsstrahlung can be obtained
1404from the gamma conversion diagram by flipping the incoming photon and
1405outgoing positron lines) and their cross sections closely related. For
1406both processes, the interaction occurs in the field of the nucleus and
1407the total and differential cross section are polarization
1408independent. Therefore, only the polarization transfer from the
1409polarized incoming particle to the outgoing particles is taken into
1410account. 
1411%
1412\begin{figure}[htb]
1413\begin{center}
1414 \includegraphics [scale=.33] {electromagnetic/standard/plots/Fyn_diag.eps}
1415 \caption {Feynman diagrams of Gamma conversion and bremsstrahlung processes.}
1416\end{center}
1417\end{figure}
1418
1419
1420\noindent
1421For both processes, the scattering can be formulated by:
1422\begin{equation}
1423    \mathcal{K}_{1}(k_{1},\bvec{\zeta}^{(1)}) + \mathcal{N}_{1}(k_{\mathcal
1424{N}_{1}}, \bvec{\zeta}^{(\mathcal {N}_{1})})
1425    \longrightarrow 
1426   \mathcal{P}_{1}(p_{1},\bvec{\xi}^{(1)}) + \mathcal{P}_{2}(p_{2},\bvec{\xi}^{(2)}) + \mathcal{N}_{2}(p_{\mathcal{N}_{2}}, \bvec{\xi}^{(\mathcal{N}_{2})})
1427\end{equation}
1428%
1429Where $\mathcal{N}_{1}(k_{\mathcal {N}_{1}}, \bvec{\zeta}^{(\mathcal
1430{N}_{1})})$ and $\mathcal{N}_{2}(p_{\mathcal{N}_{2}},
1431\bvec{\xi}^{(\mathcal{N}_{2})})$ are the initial and final state of the
1432field of the nucleus respectively assumed to be unchanged, at rest and
1433unpolarized. This leads to $k_{\mathcal {N}_{1}} = k_{\mathcal
1434{N}_{2}} = 0$ and $\bvec{\zeta}^{(\mathcal {N}_{1})} =
1435\bvec{\xi}^{(\mathcal{N}_{2})} = 0$ 
1436
1437% Gamma conversion process
1438\textbf{In the case of gamma conversion process}:\\
1439$\mathcal{K}_{1}(k_{1},\bvec{\zeta}^{(1)})$ is the incoming photon initial
1440state with momentum $k_{1}$ and polarization state $\bvec{\zeta}^{(1)}$. \\
1441$\mathcal{P}_{1}(p_{1},\bvec{\xi}^{(1)})$ and
1442$\mathcal{P}_{2}(p_{2},\bvec{\xi}^{(2)})$ are the two photons final states with
1443momenta $p_{1}$ and $p_{2}$ and polarization states $\bvec{\xi}^{(1)}$ and $\bvec{\xi}^{(2)}$.
1444
1445% Bremsstrahlung process
1446\textbf{In the case of bremsstrahlung process}:\\
1447$\mathcal{K}_{1}(k_{1},\bvec{\zeta}^{(1)})$ is the incoming lepton
1448$e^{-}(e^{+})$ initial state with momentum $k_{1}$ and polarization
1449state $\bvec{\zeta}^{(1)}$. \\
1450$\mathcal{P}_{1}(p_{1},\bvec{\xi}^{(1)})$ is the lepton $e^{-}(e^{+})$ final
1451state with momentum $p_{1}$ and polarization state $\bvec{\xi}^{(1)}$. \\
1452$\mathcal{P}_{2}(p_{2},\bvec{\xi}^{(2)})$ is the bremsstrahlung photon in
1453final state with momentum $p_{2}$ and polarization state $\bvec{\xi}^{(2)}$.
1454
1455\subsection[Polarization transfer to the photon]{Polarization transfer from the lepton $e^{-}(e^{+})$ to a photon}
1456The polarization transfer from an electron (positron) to a photon in a
1457brems\-strahlung process was first calculated by Olsen and Maximon
1458\cite{polBrems:Olsen_Maximon} taking into account both Coulomb and screening
1459effects. In the Stokes vector formalism, the $e^{-}(e^{+})$
1460polarization state can be transformed to a photon polarization finale
1461state by means of interaction matrix $T_{\gamma}^{b}$. It defined via
1462%
1463\begin{equation}
1464 \left(\begin{array}{c} 
1465    O \\
1466 \bvec{\xi}^{(2)}   
1467 \end{array}\right)
1468= T_{\gamma}^{b} \,
1469 \left(\begin{array}{c} 
1470    1 \\
1471 \bvec{\zeta}^{(1)}   
1472\end{array}\right)\;,
1473\label{eq:brem_gamma}
1474\end{equation}
1475%
1476and
1477%
1478\begin{equation}
1479T_{\gamma}^{b}\approx
1480\left(
1481\begin{array}{cccc}
14821 & 0 & 0 & 0 \\
1483D & 0 & 0 & 0 \\
14840 & 0 & 0 & 0 \\
14850 & T & 0 & L \\ 
1486\end{array} 
1487\right)\;,
1488\label{eq:matrix_brem_g}
1489\end{equation} 
1490%
1491where
1492\begin{eqnarray}
1493I &=& (\epsilon_{1}^{2}+\epsilon_{2}^{2})(3+2\Gamma)-2\epsilon_{1}\epsilon_{2}(1+4u^{2}\hat\xi^{2}\Gamma)\\
1494D &=& \left\lbrace 8\epsilon_{1}\epsilon_{2}u^{2}\hat\xi^{2}\Gamma \right\rbrace / I\\
1495T &=& \left\lbrace -4k\epsilon_{2}\hat\xi(1-2\hat\xi)u \Gamma \right\rbrace  / I \\
1496L &=& 
1497k\lbrace(\epsilon_{1}^{2}+\epsilon_{2}^{2})(3+2\Gamma)-2\epsilon_{2}(1+4u^{2}\hat\xi^{2}\Gamma)\rbrace
1498/ I
1499\end{eqnarray}
1500%
1501and
1502%
1503\begin{center}
1504\begin{tabular}{ll}
1505$\epsilon_{1}$       &  Total energy of the incoming lepton $e^{+}(e^{-})$ in units $mc^{2}$\\
1506$\epsilon_{2}$       &  Total energy of the outgoing lepton $e^{+}(e^{-})$ in units $mc^{2}$\\
1507$k$ &$=(\epsilon_{1}-\epsilon_{2})$, the energy of the bremsstrahlung photon in units of $mc^{2}$
1508\\
1509$\bvec{p}$ &  Electron (positron) initial momentum in units $mc$\\
1510$\bvec{k}$ &  Bremsstrahlung photon momentum in units $mc$\\
1511$\bvec{u}$ &  Component of $\bvec{p}$
1512      perpendicular to $\bvec{k}$ in units $mc$ and $u=\vert \bvec{u} \vert $\\
1513$\hat\xi$ & $ = 1/(1+u^{2})$
1514\end{tabular}
1515\end{center}
1516%
1517Coulomb and screening effects are contained in \(\Gamma\), defined as
1518follows
1519\begin{eqnarray}
1520\Gamma &=& \ln\left(\frac{1}{\delta}\right)-2-f(Z)+
1521           \mathcal{F}\left(\frac{\hat\xi}{\delta}\right) \quad \mbox{for } \Delta \le 120 \\ 
1522\Gamma &=& \ln\left( \frac{111}{\hat\xi Z^{\frac{1}{3}}}\right)-2-f(z)
1523           \quad \mbox{for } \Delta \ge 120
1524\end{eqnarray}
1525%
1526with
1527%
1528\begin{eqnarray}
1529\Delta &=& \frac{12 Z^{\frac{1}{3}}\epsilon_{1}\epsilon_{2} \hat\xi}{121
1530k} \quad \mbox{with $Z$ the atomic number and } \delta =
1531\frac{k}{2\epsilon_{1}\epsilon{2}}
1532\end{eqnarray}
1533%
1534%
1535\noindent
1536$f(Z)$ is the coulomb correction term derived by Davies, Bethe
1537and Maximon \cite{polBrems:Davise}.
1538$ \mathcal{F}({\hat\xi}/{\delta})$ contains the screening effects
1539and is zero for $\Delta \le 0.5 $ (No screening effects). For $0.5 \le
1540\Delta \le 120 $ (intermediate screening) it is a slowly decreasing
1541function. The $\mathcal{F}({\hat\xi}/{\delta})$ values versus
1542$\Delta$ are given in table \ref{koch} and used with a linear
1543interpolation in between.
1544
1545The polarization vector of the incoming $e^{-}(e^{+})$ must be rotated
1546into the frame defined by the scattering plane (x-z-plane) and the
1547direction of the outgoing photon (z-axis). The resulting polarization
1548vector of the bremsstrahlung photon is also given in this frame. 
1549\begin{table}[h]
1550\caption{$ \mathcal{F}({\hat\xi}/{\delta})$ for intermediate values of the screening factor \cite{polBrems:koch}.}
1551\label{koch}
1552\begin{center}
1553\begin{tabular}{|cc|cc|}
1554\hline
1555$\Delta$ &$ -\mathcal{F}\left({\hat\xi}/{\delta}\right)$ & $\Delta$& $ -\mathcal{F}\left({\hat\xi}/{\delta}\right)$\\
1556\hline
15570.5  & 0.0145 & 40.0  & 2.00 \\
15581.0  & 0.0490 & 45.0  & 2.114\\
15592.0  & 0.1400 & 50.0  & 2.216\\
15604.0  & 0.3312 & 60.0  & 2.393\\
15618.0  & 0.6758 & 70.0  & 2.545\\
156215.0 & 1.126  & 80.0  & 2.676\\
156320.0 & 1.367  & 90.0  & 2.793\\
156425.0 & 1.564  & 100.0 & 2.897\\ 
156530.0 & 1.731  & 120.0 & 3.078\\ 
156635.0 & 1.875  & & \\ 
1567\hline
1568\end{tabular} 
1569\end{center}
1570\end{table}
1571%
1572Using Eq.\ (\ref{eq:brem_gamma}) and the transfer matrix given by
1573Eq.\ (\ref{eq:matrix_brem_g}) the bremsstrahlung photon polarization
1574state in the Stokes formalism \cite{polBrems:McMaster1, polBrems:McMaster2} is given by
1575%
1576\begin{equation}
1577\xi^{(2)} = \left(
1578\begin{array}{c}
1579\xi_{1}^{(2)}\\
1580\xi_{2}^{(2)} \\
1581\xi_{3}^{(2)} \\ 
1582\end{array} 
1583\right)
1584\approx 
1585\left(
1586\begin{array}{c}
1587D \\
15880 \\
1589\zeta_{1}^{(1)}L + \zeta_{2}^{(1)}T \\ 
1590\end{array} 
1591\right)
1592\end{equation}
1593
1594\subsection[Polarization transfer to the lepton]{Remaining polarization of the lepton after emitting a bremsstrahlung photon}
1595The \(e^{-}(e^{+})\) polarization final state after emitting a
1596bremsstrahlung photon can be calculated using the interaction matrix
1597\(T_{l}^{b}\) which describes the lepton depolarization. The
1598polarization vector for the outgoing \(e^{-}(e^{+})\) is not given by
1599Olsen and Maximon. However, their results can be used to calculate the
1600following transfer matrix \cite{polBrems:klausFl,polBrems:hoogduin}.
1601%
1602\begin{equation}
1603 \left(\begin{array}{c} 
1604    O \\
1605 \bvec{\xi}^{(1)}   
1606 \end{array}\right)
1607 = T_{l}^{b} \,
1608 \left(\begin{array}{c} 
1609    1 \\
1610 \bvec{\zeta}^{(1)}   
1611\end{array}\right)
1612\label{eq:brem_lepton}
1613\end{equation}
1614%
1615\begin{equation}
1616T_{l}^{b}\approx
1617\left(
1618\begin{array}{cccc}
16191 & 0 & 0 & 0 \\
1620D & M & 0 & E \\
16210 & 0 & M & 0 \\
16220 & F & 0 & M+P \\ 
1623\end{array} 
1624\right)
1625\label{eq:matrix_brem_l}
1626\end{equation}
1627%
1628where
1629%
1630\begin{eqnarray}
1631  I &=&(\epsilon_{1}^{2}+\epsilon_{2}^{2})(3+2\Gamma)-2\epsilon_{1}\epsilon_{2}(1+4u^{2}\hat\xi^{2}\Gamma)\\
1632  F &=& \epsilon_{2} \left\lbrace 4k\hat\xi u (1-2\hat\xi)\Gamma\right\rbrace /I \\
1633  E &=& \epsilon_{1}  \left\lbrace 4k\hat\xi u (2\hat\xi-1)\Gamma \right\rbrace /I\\
1634  M &=& \left\lbrace 4k\epsilon_{1}\epsilon_{2}(1+\Gamma - 2 u^{2}\hat\xi^{2} \Gamma)\right\rbrace / I \\
1635  P &=& \left\lbrace k^{2} (1+8 \Gamma(\hat\xi - 0.5)^{2}\right\rbrace  / I
1636\end{eqnarray}
1637%
1638and
1639%
1640\begin{center}
1641\begin{tabular}{ll}
1642$\epsilon_{1}$       &  Total energy of the incoming $e^{+}/e^{-}$ in units $mc^{2}$\\
1643$\epsilon_{2}$       &  Total energy of the outgoing $e^{+}/e^{-}$ in units $mc^{2}$\\
1644$k$ & $=(\epsilon_{1}-\epsilon_{2})$, energy of the photon in units of $mc^{2}$\\
1645$\bvec{p}$ &  Electron (positron) initial momentum in units $mc$\\
1646$\bvec{k}$ &  Photon momentum in units $mc$\\
1647$\bvec{u}$ &  Component of $\bvec{p}$
1648perpendicular  to $\bvec{k}$ in units $mc$ and $u=\vert \bvec{u} \vert $
1649\end{tabular}
1650\end{center}
1651
1652Using Eq.\ (\ref{eq:brem_lepton}) and the transfer matrix given by
1653Eq.\ (\ref{eq:matrix_brem_l}) the \(e^{-}(e^{+})\) polarization state
1654after emitting a bremsstrahlung photon is given in the Stokes
1655formalism by
1656%
1657\begin{equation}
1658\xi^{(1)} = \left(
1659\begin{array}{c}
1660\xi_{1}^{(1)}\\
1661\xi_{2}^{(1)} \\
1662\xi_{3}^{(1)} \\ 
1663\end{array} 
1664\right)
1665\approx 
1666\left(
1667\begin{array}{c}
1668 \zeta_{1}^{(1)} M + \zeta_{3}^{(1)} E \\
1669 \zeta_{2}^{(1)} M  \\
1670 \zeta_{3}^{(1)}(M+P) + \zeta_{1}^{(1)} F \\ 
1671\end{array} 
1672\right)
1673\;.
1674\end{equation}
1675
1676\subsection{Status of this document}
167720.11.06 created by K.Laihem\\
167821.02.07 minor update by A.Sch{\"a}licke\\
1679
1680\begin{latexonly}
1681
1682\begin{thebibliography}{7}
1683
1684\bibitem{polBrems:Olsen_Maximon} H.~Olsen and L.C.~Maximon. Photon and electron polarization in high- energy bremsstrahlung and pair production with screening. Physical Review, 114:887-904, 1959.
1685
1686\bibitem{polBrems:McMaster1} W.H.~McMaster. Polarization and the Stokes parameters. American Journal of Physics, 22(6):351-362, 1954.
1687
1688\bibitem{polBrems:McMaster2}W.H.~McMaster. Matrix representation of polarization. Reviews of Modern Physics, 33(1):8-29, 1961.
1689
1690\bibitem{polBrems:klausFl}K.~Fl{\"o}ttmann. Investigations toward the development of polarized and unpolarized high intensity positron sources for linear colliders. PhD thesis, Universitat Hamburg, 1993.
1691
1692\bibitem{polBrems:hoogduin}Hoogduin, Johannes Marinus. Electron, positron and photon polarimetry. PhD thesis, Rijksuniversiteit Groningen 1997.
1693
1694\bibitem{polBrems:Davise}H.~Davies, H.A.~Bethe and L.C.~Maximon. Theory of Bremsstrahlung and Pair Production. II. Integral Cross Section for Pair Production. Physical Review, 93(4):788-795, 1954.
1695
1696\bibitem{polBrems:koch}H.W.~Koch and J.W.~Motz. Bremsstrahlung cross-section formulas and related data. Review Mod. Phys., 31(4):920-955, 1959.
1697
1698\bibitem{polBrems:Laihem:thesis}
1699K.~Laihem, PhD thesis, Humboldt University Berlin, Germany, (2007).
1700
1701\end{thebibliography}
1702\end{latexonly}
1703
1704\begin{htmlonly}
1705\begin{thebibliography}{9}
1706\begin{enumerate}
1707
1708\item H.~Olsen and L.C.~Maximon. Photon and electron polarization in high- energy bremsstrahlung and pair production with screening. Physical Review, 114:887-904, 1959.
1709
1710\item W.H.~McMaster. Polarization and the Stokes parameters. American Journal of Physics, 22(6):351-362, 1954.
1711
1712\item W.H.~McMaster. Matrix representation of polarization. Reviews of Modern Physics, 33(1):8-29, 1961.
1713
1714\item K.~Fl{\"o}ttmann. Investigations toward the development of polarized and unpolarized high intensity positron sources for linear colliders. PhD thesis, Universitat Hamburg, 1993.
1715
1716\item Hoogduin, Johannes Marinus. Electron, positron and photon polarimetry. PhD thesis, Rijksuniversiteit Groningen 1997.
1717
1718\item H.~Davies, H.A.~Bethe and L.C.~Maximon. Theory of Bremsstrahlung and Pair Production. II. Integral Cross Section for Pair Production. Physical Review, 93(4):788-795, 1954.
1719
1720\item H.W.~Koch and J.W.~Motz. Bremsstrahlung cross-section formulas and related data. Review Mod. Phys., 31(4):920-955, 1959.
1721
1722\item K.~Laihem, PhD thesis, Humboldt University Berlin, Germany, (2007).
1723
1724\end{enumerate}
1725\end{htmlonly}
1726
1727\newpage
1728\section{Polarized Gamma conversion into an electron--positron pair}
1729\subsection{Method}
1730
1731The polarized version of gamma conversion is based on the EM standard
1732process {\em G4GammaConversion}. Mean free path and the distribution
1733of  explicitly generated final state particles are treated by this
1734version. For details consult
1735section \ref{sec:em.conv}.
1736
1737The remaining task is to attribute polarization vectors to the
1738generated final state leptons, which is discussed in the following.
1739
1740
1741\subsection[Polarization transfer]{Polarization transfer from the photon to the two leptons}
1742Gamma conversion process is essentially the inverse process of
1743Bremsstrahlung and the interaction matrix is obtained by inverting the
1744rows and columns of the bremsstrahlung matrix and changing the sign of
1745\(\epsilon_{2}\), cf.\ section \ref{sec:pol.bremsstrahlung}. It
1746follows from the work by Olsen and Maximon 
1747\cite{polPair:Olsen_Maximon} that the polarization state \(\xi^{(1)}\) of an
1748electron or positron after pair production is obtained by
1749%
1750\begin{equation}
1751 \left(\begin{array}{c} 
1752    O \\
1753 \bvec{\xi}^{(1)}   
1754 \end{array}\right)
1755 = T_{l}^{p}  \,
1756 \left(\begin{array}{c} 
1757    1 \\
1758 \bvec{\zeta}^{(1)}   
1759\end{array}\right)
1760\label{eq:conv_lepton}
1761\end{equation}
1762%
1763and
1764%
1765\begin{equation}
1766T_{l}^{p}\approx
1767\left(
1768\begin{array}{cccc}
17691 & D & 0 & 0 \\
17700 & 0 & 0 & T \\
17710 & 0 & 0 & 0 \\
17720 & 0 & 0 & L \\ 
1773\end{array} 
1774\right)
1775\;,
1776\label{eq:matrix_conv}
1777\end{equation}
1778%
1779where
1780\begin{eqnarray}
1781I &=& (\epsilon_{1}^{2}+\epsilon_{2}^{2})(3+2\Gamma)+2\epsilon_{1}\epsilon_{2}(1+4u^{2}\hat\xi^{2}\Gamma)\\
1782D &=& \left\lbrace -8\epsilon_{1}\epsilon_{2}u^{2}\hat\xi^{2}\Gamma \right\rbrace / I\\
1783T &=& \left\lbrace -4k\epsilon_{2}\hat\xi(1-2\hat\xi)u \Gamma \right\rbrace  / I \\
1784L &=&
1785k\lbrace(\epsilon_{1}^{2}+\epsilon_{2}^{2})(3+2\Gamma)-2\epsilon_{2}(1+4u^{2}\hat\xi^{2}\Gamma)\rbrace/ I
1786\end{eqnarray}
1787and
1788\begin{center}
1789\begin{tabular}{ll}
1790$\epsilon_{1}$  &  total energy of the first lepton $e^{+}(e^{-})$ in units $mc^{2}$\\
1791$\epsilon_{2}$  & total energy of the second lepton $e^{-}(e^{+})$ in units $mc^{2}$\\
1792$k=(\epsilon_{1}+\epsilon_{2})$ & energy of the incoming photon in units of $mc^{2}$\\
1793$\bvec{p}$      & electron=positron initial momentum in units $mc$\\
1794$\bvec{k}$      & photon momentum in units $mc$\\
1795$\bvec{u}$      & electron/positron initial momentum in units $mc$\\
1796$u$ & $=\vert \bvec{u} \vert $
1797\end{tabular}
1798\end{center}
1799%
1800%Here, $\epsilon_{1}(\epsilon_{2})$  is the energy of the observed
1801%electron or positron. The matrix (\ref{eq:matrix_conv}) for pair
1802%production is the transpose of matrix (\ref{eq:matrix_brem_g}).
1803Coulomb and screening effects are contained in \(\Gamma\), defined in
1804section \ref{sec:pol.bremsstrahlung}.
1805
1806
1807Using Eq.\ (\ref{eq:conv_lepton}) and the transfer matrix given by
1808Eq.\ (\ref{eq:matrix_conv}) the polarization state of
1809the produced $e^{-}(e^{+})$ is given in the Stokes formalism by:
1810
1811\begin{equation}
1812\xi^{(1)} = \left(
1813\begin{array}{c}
1814\xi_{1}^{(1)}\\
1815\xi_{2}^{(1)} \\
1816\xi_{3}^{(1)} \\ 
1817\end{array} 
1818\right)
1819\approx 
1820\left(
1821\begin{array}{c}
1822\zeta_{3}^{(1)} T  \\
18230 \\ 
1824\zeta_{3}^{(1)} L  \\
1825\end{array} 
1826\right)
1827\end{equation}
1828
1829
1830\subsection{Status of this document}
183120.11.06 created by K.Laihem\\
183221.02.07 minor update by A.Sch{\"a}licke\\
1833
1834\begin{latexonly}
1835
1836\begin{thebibliography}{9}
1837
1838\bibitem{polPair:Olsen_Maximon} H.~Olsen and L.C.~Maximon. Photon and electron polarization in high- energy bremsstrahlung and pair production with screening. Physical Review, 114:887-904, 1959.
1839
1840\bibitem{polPair:Laihem:thesis}
1841K.~Laihem, PhD thesis, Humboldt University Berlin, Germany, (2007).
1842
1843\end{thebibliography}
1844
1845\end{latexonly}
1846
1847\begin{htmlonly}
1848\begin{enumerate}
1849
1850\item H.~Olsen and L.C.~Maximon. Photon and electron polarization in high- energy bremsstrahlung and pair production with screening. Physical Review, 114:887-904, 1959.
1851
1852\item K.~Laihem, PhD thesis, Humboldt University Berlin, Germany, (2007).
1853
1854\end{enumerate}
1855
1856\end{htmlonly}
1857
1858
1859
1860% LocalWords:  Bhabha
Note: See TracBrowser for help on using the repository browser.