| 1 |
|
|---|
| 2 | % ======================================================================
|
|---|
| 3 |
|
|---|
| 4 | %\newcommand{\bvec}[1]{{\mathbf{#1}}}
|
|---|
| 5 | \newcommand{\bvec}[1]{{\boldsymbol{#1}}} %% use boldsymbol if amsmath is available!
|
|---|
| 6 |
|
|---|
| 7 | \section{Introduction}\label{sec:pol.intro}
|
|---|
| 8 |
|
|---|
| 9 | With the EM polarization extension it is possible to track polarized
|
|---|
| 10 | particles (leptons and photons). Special emphasis will be
|
|---|
| 11 | put in the proper treatment of polarized matter and its interaction
|
|---|
| 12 | with longitudinal polarized electrons/positrons or circularly
|
|---|
| 13 | polarized photons, which is for instance essential for the simulation
|
|---|
| 14 | of positron polarimetry. The implementation is base on Stokes vectors
|
|---|
| 15 | \cite{polIntro:McMaster:1961}. Further details can be found in
|
|---|
| 16 | \cite{polIntro:Laihem:thesis}.
|
|---|
| 17 |
|
|---|
| 18 | In its current state, the following polarization
|
|---|
| 19 | dependent processes are considered
|
|---|
| 20 | \begin{itemize}
|
|---|
| 21 | \item Bhabha/M{\o}ller scattering,
|
|---|
| 22 | \item Positron Annihilation,
|
|---|
| 23 | \item Compton scattering,
|
|---|
| 24 | \item Pair creation,
|
|---|
| 25 | \item Bremsstrahlung.
|
|---|
| 26 | \end{itemize}
|
|---|
| 27 |
|
|---|
| 28 | %\subsection{Existing codes for the simulation of polarized processes}
|
|---|
| 29 |
|
|---|
| 30 | Several simulation packages for the realistic description
|
|---|
| 31 | of the development of electromagnetic showers in matter have been
|
|---|
| 32 | developed. A prominent example of such codes is EGS (Electron Gamma
|
|---|
| 33 | Shower)\cite{polIntro:Nelson:1985ec}.
|
|---|
| 34 | For this simulation framework extensions with the treatment of
|
|---|
| 35 | polarized particles exist \cite{polIntro:Floettmann:thesis,polIntro:Namito:1993sv,polIntro:Liu:2000ey};
|
|---|
| 36 | the most complete has been developed by K.~Fl{\"o}ttmann
|
|---|
| 37 | \cite{polIntro:Floettmann:thesis}. It is based on the matrix formalism
|
|---|
| 38 | \cite{polIntro:McMaster:1961}, which enables a very general treatment of
|
|---|
| 39 | polarization. However, the Fl{\"o}ttmann extension concentrates on
|
|---|
| 40 | evaluation of polarization transfer, i.e.\ the effects of polarization
|
|---|
| 41 | induced asymmetries are neglected, and interactions with polarized
|
|---|
| 42 | media are not considered.
|
|---|
| 43 |
|
|---|
| 44 | Another important simulation tool for detector studies is \textsc{Geant3}
|
|---|
| 45 | \cite{polIntro:Brun:1985ps}. Here also some effort has been made to include
|
|---|
| 46 | polarization \cite{polIntro:Alexander:2003fh,polIntro:Hoogduin:thesis}, but these
|
|---|
| 47 | extensions are not publicly available.
|
|---|
| 48 |
|
|---|
| 49 | %\section{Definitions}
|
|---|
| 50 |
|
|---|
| 51 | In general the implementation of polarization in this EM polarization
|
|---|
| 52 | library follows very closely the approach by K.~Fl{\"o}tt\-mann
|
|---|
| 53 | \cite{polIntro:Floettmann:thesis}. The basic principle is to associate a {\em
|
|---|
| 54 | Stokes vector} to each particle and track the mean polarization from
|
|---|
| 55 | one interaction to another. The basics for this approach is the matrix
|
|---|
| 56 | formalism as introduced in \cite{polIntro:McMaster:1961}.
|
|---|
| 57 |
|
|---|
| 58 | \subsection{Stokes vector}
|
|---|
| 59 |
|
|---|
| 60 | The {\em Stokes vector} \cite{polIntro:Stokes:1852,polIntro:McMaster:1961} is a rather
|
|---|
| 61 | simple object (in comparison to e.g.\ the spin density matrix), three
|
|---|
| 62 | real numbers are sufficient for the characterization of the polarization
|
|---|
| 63 | state of any single electron, positron or photon.
|
|---|
| 64 | Using {\em Stokes vectors} {\bf all} possible polarization states can
|
|---|
| 65 | be described, i.e.\ circular and linear polarized photons can be
|
|---|
| 66 | handled with the same formalism as longitudinal
|
|---|
| 67 | and transverse polarized electron/positrons.
|
|---|
| 68 |
|
|---|
| 69 | The {\em Stokes vector} can be used also for beams, in the sense that
|
|---|
| 70 | it defines a mean polarization.
|
|---|
| 71 |
|
|---|
| 72 | In the EM polarization library the Stokes vector is defined as
|
|---|
| 73 | follows:
|
|---|
| 74 |
|
|---|
| 75 | \begin{center}
|
|---|
| 76 | %\rotatebox{90}{ Method A}
|
|---|
| 77 | \renewcommand{\arraystretch}{1.15}
|
|---|
| 78 | \begin{tabular}{|c|c|c|}
|
|---|
| 79 | \hline
|
|---|
| 80 | & Photons & Electrons \\
|
|---|
| 81 | \hline
|
|---|
| 82 | $\xi_1$ & linear polarization & polarization in x direction \\
|
|---|
| 83 | $\xi_2$ & linear polarization but $\pi/4$ to right
|
|---|
| 84 | & polarization in y direction \\
|
|---|
| 85 | $\xi_3$ & circular polarization & polarization in z direction \\
|
|---|
| 86 | \hline
|
|---|
| 87 | \end{tabular}
|
|---|
| 88 | \end{center}
|
|---|
| 89 | This definition is assumed in the {\em particle reference frame},
|
|---|
| 90 | i.e. with the momentum of the particle pointing to the z direction,
|
|---|
| 91 | cf.\ also next section about coordinate transformations.
|
|---|
| 92 | Correspondingly a 100\% longitudinally polarized
|
|---|
| 93 | electron or positron is characterized by
|
|---|
| 94 | \begin{equation}
|
|---|
| 95 | \bvec{\xi}=\mbox{$\scriptscriptstyle\left(\begin{array}{c}0\\0\\\pm1\end{array}\right)$},
|
|---|
| 96 | \end{equation}
|
|---|
| 97 | where $\pm1$ corresponds to spin parallel (anti parallel) to
|
|---|
| 98 | particle's momentum.
|
|---|
| 99 | %
|
|---|
| 100 | Note that this definition is similar, but not
|
|---|
| 101 | identical to the definition used in McMaster \cite{polIntro:McMaster:1961}.
|
|---|
| 102 |
|
|---|
| 103 | Many scattering cross sections of polarized processes using
|
|---|
| 104 | Stokes vectors for the characterization of initial and final states are
|
|---|
| 105 | available in \cite{polIntro:McMaster:1961}. In general a differential cross
|
|---|
| 106 | section has the form
|
|---|
| 107 | \begin{equation}
|
|---|
| 108 | \frac{d\sigma(\bvec{\zeta}^{(1)},\bvec{\zeta}^{(2)},\bvec{\xi}^{(1)},\bvec{\xi}^{(2)})}{d\Omega}\;,
|
|---|
| 109 | \end{equation}
|
|---|
| 110 | i.e.\ it is a function of the polarization states of the initial
|
|---|
| 111 | particles $\bvec{\zeta}^{(1)}$ and $\bvec{\zeta}^{(2)}$, as well as of the polarization states
|
|---|
| 112 | of the final state particles $\bvec{\xi}^{(1)}$ and $\bvec{\xi}^{(2)}$ (in addition to the
|
|---|
| 113 | kinematic variables $E$, $\theta$, and $\phi$).
|
|---|
| 114 |
|
|---|
| 115 | Consequently, in a simulation we have to account for
|
|---|
| 116 | \begin{itemize}
|
|---|
| 117 | \item Asymmetries:
|
|---|
| 118 | \item[] Polarization of beam ($\bvec{\zeta}^{(1)}$) and target ($\bvec{\zeta}^{(2)}$) can induce
|
|---|
| 119 | azimuthal and polar asymmetries, and may also influence on the total
|
|---|
| 120 | cross section ({\tt Geant4: GetMeanFreePath()}).
|
|---|
| 121 | \item Polarization transfer / depolarization effects
|
|---|
| 122 | \item[] The dependence on the final state polarizations defines a
|
|---|
| 123 | possible transfer from initial polarization to final state particles.
|
|---|
| 124 | \end{itemize}
|
|---|
| 125 |
|
|---|
| 126 | \subsection{Transfer matrix}
|
|---|
| 127 |
|
|---|
| 128 | %For asymmetries one can extent the existing standard EM physics classes,
|
|---|
| 129 | %introducing the polarization of the initial states. On the other hand
|
|---|
| 130 | %for a general simulation of polarization transfer one has to work harder.
|
|---|
| 131 | Using the formalism of McMaster, differential cross section and
|
|---|
| 132 | polarization transfer from the initial state ($\bvec{\zeta}^{(1)}$) to one final state
|
|---|
| 133 | particle ($\bvec{\xi}^{(1)}$) are combined in an interaction matrix $T$:
|
|---|
| 134 |
|
|---|
| 135 | \begin{equation}
|
|---|
| 136 | \left(\begin{array}{c}
|
|---|
| 137 | O \\
|
|---|
| 138 | \bvec{\xi}^{(1)}
|
|---|
| 139 | \end{array}\right)
|
|---|
| 140 | = T \,
|
|---|
| 141 | \left(\begin{array}{c}
|
|---|
| 142 | I \\
|
|---|
| 143 | \bvec{\zeta}^{(1)}
|
|---|
| 144 | \end{array}\right)\;,
|
|---|
| 145 | \end{equation}
|
|---|
| 146 | where $I$ and $O$ are the incoming and outgoing currents, respectively.
|
|---|
| 147 | %
|
|---|
| 148 | In general the $4\times4$ matrix $T$ depends on the target
|
|---|
| 149 | polarization $\bvec{\zeta}^{(2)}$ (and of course on the kinematic
|
|---|
| 150 | variables $E$, $\theta$, $\phi$). Similarly one can define
|
|---|
| 151 | a matrix defining the polarization transfer to second final state
|
|---|
| 152 | particle like
|
|---|
| 153 | \begin{equation}
|
|---|
| 154 | \left(\begin{array}{c}
|
|---|
| 155 | O \\
|
|---|
| 156 | \bvec{\xi}^{(2)}
|
|---|
| 157 | \end{array}\right)
|
|---|
| 158 | = T' \,
|
|---|
| 159 | \left(\begin{array}{c}I\\
|
|---|
| 160 | \bvec{\zeta}^{(1)}\end{array}\right) \;.
|
|---|
| 161 | \end{equation}
|
|---|
| 162 | %
|
|---|
| 163 | %The components $I$ and $O$ refer to the incoming and outgoing
|
|---|
| 164 | %intensities, respectively.
|
|---|
| 165 | In this framework the transfer matrix $T$ is of the form
|
|---|
| 166 | \begin{equation}
|
|---|
| 167 | T =
|
|---|
| 168 | \left(
|
|---|
| 169 | \begin{array}{llll}
|
|---|
| 170 | S & A_1 & A_2 & A_3 \\
|
|---|
| 171 | P_1 & M_{11} & M_{21} & M_{31} \\
|
|---|
| 172 | P_2 & M_{12} & M_{22} & M_{32} \\
|
|---|
| 173 | P_3 & M_{13} & M_{23} & M_{33} \\
|
|---|
| 174 | \end{array}
|
|---|
| 175 | \right)
|
|---|
| 176 | \;.
|
|---|
| 177 | \end{equation}
|
|---|
| 178 | The matrix elements $T_{ij}$ can be identified as (unpolarized)
|
|---|
| 179 | differential cross section ($S$), polarized differential cross section
|
|---|
| 180 | ($A_j$), polarization transfer ($M_{ij}$), and (de)polarization ($P_i$).
|
|---|
| 181 | In the Fl{\"o}ttmann extension the elements $A_j$ and $P_i$ have been
|
|---|
| 182 | neglected, thus concentrating on polarization transfer only.
|
|---|
| 183 | Using the full matrix takes now all polarization effects into account.
|
|---|
| 184 |
|
|---|
| 185 |
|
|---|
| 186 | The transformation matrix, i.e.\ the dependence of the mean
|
|---|
| 187 | polarization of final state particles, can be derived from the
|
|---|
| 188 | asymmetry of the differential cross section w.r.t.\ this particular
|
|---|
| 189 | polarization.
|
|---|
| 190 | Where the asymmetry is defined as usual by
|
|---|
| 191 | \begin{equation}
|
|---|
| 192 | A = \frac{\sigma(+1)-\sigma(-1)}{\sigma(+1)+\sigma(-1)} \;.
|
|---|
| 193 | \end{equation}
|
|---|
| 194 | The mean final state polarizations can be determined coefficient by
|
|---|
| 195 | coefficient.
|
|---|
| 196 | %
|
|---|
| 197 | %For instance the components of the mean Stokes vector
|
|---|
| 198 | %% following eq.\ \eqref{eq:diffxsec}
|
|---|
| 199 | %$\bvec{\hat\xi}^{(1)}$ of the first final state particle is obtained
|
|---|
| 200 | %by
|
|---|
| 201 | %\begin{equation}
|
|---|
| 202 | % \hat\xi^{(2)}_1 = \frac{\sigma(\bvec{\zeta}^{(1)},\bvec{\zeta}^{(2)},
|
|---|
| 203 | %\bvec{\xi}^{(1)}=\mbox{\small$\left(\!\!\begin{array}{c}+1\\0\\0\end{array}\!\!\right)$},
|
|---|
| 204 | %\bvec{\xi}^{(2)}=\mbox{\small$\left(\!\!\begin{array}{c}0\\0\\0\end{array}\!\!\right)$})
|
|---|
| 205 | %-
|
|---|
| 206 | %\sigma(\bvec{\zeta}^{(1)},\bvec{\zeta}^{(2)},
|
|---|
| 207 | %\bvec{\xi}^{(1)}=\mbox{\small$\left(\!\!\begin{array}{c}-1\\0\\0\end{array}\!\!\right)$},
|
|---|
| 208 | %\bvec{\xi}^{(2)}=\mbox{\small$\left(\!\!\begin{array}{c}0\\0\\0\end{array}\!\!\right)$})
|
|---|
| 209 | %}{\sigma(\dots)+\sigma(\dots)}
|
|---|
| 210 | %\end{equation}
|
|---|
| 211 | %
|
|---|
| 212 | %\begin{equation}
|
|---|
| 213 | % \hat\xi^{(2)}_2 = \frac{\sigma(\bvec{\zeta}^{(1)},\bvec{\zeta}^{(2)},
|
|---|
| 214 | %\bvec{\xi}^{(1)}=\mbox{\small$\left(\!\!\begin{array}{c}0\\+1\\0\end{array}\!\!\right)$},
|
|---|
| 215 | %\bvec{\xi}^{(2)}=\mbox{\small$\left(\!\!\begin{array}{c}0\\0\\0\end{array}\!\!\right)$})
|
|---|
| 216 | %-
|
|---|
| 217 | %\sigma(\bvec{\zeta}^{(1)},\bvec{\zeta}^{(2)},
|
|---|
| 218 | %\bvec{\xi}^{(1)}=\mbox{\small$\left(\!\!\begin{array}{c}0\\-1\\0\end{array}\!\!\right)$},
|
|---|
| 219 | %\bvec{\xi}^{(2)}=\mbox{\small$\left(\!\!\begin{array}{c}0\\0\\0\end{array}\!\!\right)$})
|
|---|
| 220 | %}{\sigma(\dots)+\sigma(\dots)}
|
|---|
| 221 | %\end{equation}
|
|---|
| 222 | %
|
|---|
| 223 | %\begin{equation}
|
|---|
| 224 | % \hat\xi^{(2)}_3 = \frac{\sigma(\bvec{\zeta}^{(1)},\bvec{\zeta}^{(2)},
|
|---|
| 225 | %\bvec{\xi}^{(1)}=\mbox{\small$\left(\!\!\begin{array}{c}0\\0\\+1\end{array}\!\!\right)$},
|
|---|
| 226 | %\bvec{\xi}^{(2)}=\mbox{\small$\left(\!\!\begin{array}{c}0\\0\\0\end{array}\!\!\right)$})
|
|---|
| 227 | %-
|
|---|
| 228 | %\sigma(\bvec{\zeta}^{(1)},\bvec{\zeta}^{(2)},
|
|---|
| 229 | %\bvec{\xi}^{(1)}=\mbox{\small$\left(\!\!\begin{array}{c}0\\0\\-1\end{array}\!\!\right)$},
|
|---|
| 230 | %\bvec{\xi}^{(2)}=\mbox{\small$\left(\!\!\begin{array}{c}0\\0\\0\end{array}\!\!\right)$})
|
|---|
| 231 | %}{\sigma(\dots)+\sigma(\dots)}
|
|---|
| 232 | %\end{equation}
|
|---|
| 233 | %
|
|---|
| 234 |
|
|---|
| 235 | In general, the differential cross section is a linear function
|
|---|
| 236 | of the polarizations, i.e.
|
|---|
| 237 | \begin{eqnarray}
|
|---|
| 238 | \frac{d\sigma(\bvec{\zeta}^{(1)},\bvec{\zeta}^{(2)},\bvec{\xi}^{(1)},\bvec{\xi}^{(2)})}{d\Omega} &=&
|
|---|
| 239 | \Phi_{(\zeta^{(1)},\zeta^{(2)})}
|
|---|
| 240 | + \bvec{A}_{(\zeta^{(1)},\zeta^{(2)})} \cdot\bvec{\xi}^{(1)}
|
|---|
| 241 | + \bvec{B}_{(\zeta^{(1)},\zeta^{(2)})} \cdot\bvec{\xi}^{(2)} \nonumber\\
|
|---|
| 242 | && \quad \quad \quad
|
|---|
| 243 | +\, {\bvec{\xi}^{(1)}}^T M_{(\zeta^{(1)},\zeta^{(2)})} \,\bvec{\xi}^{(2)}
|
|---|
| 244 | \end{eqnarray}
|
|---|
| 245 | In this form, the mean polarization of the final state can be read off
|
|---|
| 246 | easily, and one obtains
|
|---|
| 247 | \begin{eqnarray}
|
|---|
| 248 | \langle\bvec{\xi}^{(1)}\rangle &=& \frac{1}{\Phi_{(\zeta^{(1)},\zeta^{(2)})}}
|
|---|
| 249 | \bvec{A}_{(\zeta^{(1)},\zeta^{(2)})} \;\; \mbox{and} \\
|
|---|
| 250 | \langle\bvec{\xi}^{(2)}\rangle &=& \frac{1}{\Phi_{(\zeta^{(1)},\zeta^{(2)})}}
|
|---|
| 251 | \bvec{B}_{(\zeta^{(1)},\zeta^{(2)})} \;.
|
|---|
| 252 | \end{eqnarray}
|
|---|
| 253 |
|
|---|
| 254 | Note, that the {\em mean} polarization states do not depend on the
|
|---|
| 255 | correlation matrix $M_{(\zeta^{(1)},\zeta^{(2)})}$. In order to account for
|
|---|
| 256 | correlation one has to generate {\em single} particle Stokes
|
|---|
| 257 | vector explicitly, i.e.\ on an event by event basis. However, this
|
|---|
| 258 | implementation generates {\em mean} polarization states, and neglects
|
|---|
| 259 | correlation effects.
|
|---|
| 260 |
|
|---|
| 261 | %\newpage
|
|---|
| 262 | \subsection{Coordinate transformations}
|
|---|
| 263 |
|
|---|
| 264 | \begin{figure}[h!]
|
|---|
| 265 | \centerline{\includegraphics[width=8.cm]{electromagnetic/standard/plots/frames.eps}}
|
|---|
| 266 | \caption{\label{pol.interframe}
|
|---|
| 267 | The {\em interaction frame} and the {\em particle frames} for the
|
|---|
| 268 | example of Compton scattering. The momenta of all participating
|
|---|
| 269 | particle lie in the $x$-$z$-plane, the scattering plane. The
|
|---|
| 270 | incoming photon gives the $z$ direction. The outgoing photon is
|
|---|
| 271 | defined as {\em particle 1} and gives the $x$-direction, perpendicular to
|
|---|
| 272 | the $z$-axis. The $y$-axis is then perpendicular to the scattering
|
|---|
| 273 | plane and completes the definition of a right handed coordinate
|
|---|
| 274 | system called {\em interaction frame}.
|
|---|
| 275 | The {\em particle frame} is defined by the Geant4 routine
|
|---|
| 276 | {\tt G4ThreeMomemtum::rotateUz()}.}
|
|---|
| 277 | \end{figure}
|
|---|
| 278 |
|
|---|
| 279 | Three different coordinate systems are used in the evaluation of
|
|---|
| 280 | polarization states:
|
|---|
| 281 | \begin{itemize}
|
|---|
| 282 | \item {\bf World frame}
|
|---|
| 283 | %\item[]
|
|---|
| 284 |
|
|---|
| 285 | The geometry of the target, and the momenta of all particles
|
|---|
| 286 | in Geant4 are noted in the world frame $X$, $Y$, $Z$ (the {\em global
|
|---|
| 287 | reference frame}, GRF). It is the basis of the calculation of any
|
|---|
| 288 | other coordinate system.
|
|---|
| 289 | \item {\bf Particle frame}
|
|---|
| 290 | %\item[]
|
|---|
| 291 |
|
|---|
| 292 | Each particle is carrying its own coordinate system.
|
|---|
| 293 | In this system the direction of motion coincides with the
|
|---|
| 294 | $z$-direction. Geant4 provides a transformation from any particle
|
|---|
| 295 | frame to the World frame by the method
|
|---|
| 296 | {\tt G4ThreeMomemtum::rotateUz()}. Thus, the $y$-axis of the
|
|---|
| 297 | {\em particle reference frame} (PRF) lies in the $X$-$Y$-plane of
|
|---|
| 298 | the world frame.
|
|---|
| 299 |
|
|---|
| 300 | The Stokes vector of any moving particle is defined w.r.t. the
|
|---|
| 301 | corresponding particle frame.
|
|---|
| 302 | Particles at rest (e.g.\ electrons of a media) use the world frame as
|
|---|
| 303 | particle frame.
|
|---|
| 304 | \item {\bf Interaction frame}
|
|---|
| 305 | %\item[]
|
|---|
| 306 |
|
|---|
| 307 | For the evaluation of the polarization transfer another
|
|---|
| 308 | coordinate system is used, defined by the scattering plane, cf.\
|
|---|
| 309 | fig.\ \ref{pol.interframe}. There the
|
|---|
| 310 | $z$-axis is defined by the direction of motion of the incoming
|
|---|
| 311 | particle. The scattering plane is spanned by the $z$-axis and the
|
|---|
| 312 | $x$-axis, in a way, that the direction of {\em particle~1} has a
|
|---|
| 313 | positive $x$ component. The definition of {\em particle~1} depends on
|
|---|
| 314 | the process, for instance in Compton scattering, the outgoing photon
|
|---|
| 315 | is referred as {\em particle~1}\footnote{Note, for an incoming
|
|---|
| 316 | particle travelling on the $Z$-axis (of GRF), the $y$-axis of the PRF
|
|---|
| 317 | of both outgoing particles is parallel to the $y$-axis of the
|
|---|
| 318 | {\em interaction frame}.}.
|
|---|
| 319 | \end{itemize}
|
|---|
| 320 |
|
|---|
| 321 | All frames are right handed.
|
|---|
| 322 |
|
|---|
| 323 |
|
|---|
| 324 | \subsection{Polarized beam and material}
|
|---|
| 325 |
|
|---|
| 326 | Polarization of beam particles is well established. It can be used for
|
|---|
| 327 | simulating low-energy Compton scattering of linear polarized
|
|---|
| 328 | photons. The interpretation as Stokes vector allows now the usage in a
|
|---|
| 329 | more general framework.
|
|---|
| 330 | %
|
|---|
| 331 | The polarization state of a (initial) beam particle can be fixed
|
|---|
| 332 | using standard the ParticleGunMessenger class. For example, the class {\tt
|
|---|
| 333 | G4ParticleGun} provides the method {\tt SetParticlePolarization()},
|
|---|
| 334 | which is usually accessable via
|
|---|
| 335 | \begin{verbatim}
|
|---|
| 336 | /gun/polarization <Sx> <Sy> <Sz>
|
|---|
| 337 | \end{verbatim}
|
|---|
| 338 | in a macro file.
|
|---|
| 339 |
|
|---|
| 340 | In addition for the simulation of polarized media, a possibility
|
|---|
| 341 | to assign Stokes vectors to physical volumes is provided by a new
|
|---|
| 342 | class, the so-called {\em G4PolarizationManager}.
|
|---|
| 343 | %It also provides some helper routines for the evaluation of Stokes
|
|---|
| 344 | %vectors in different frames of reference.
|
|---|
| 345 | %
|
|---|
| 346 | The procedure to assign a polarization vector to a media, is done
|
|---|
| 347 | during the {\em detector construction}. There the {\em
|
|---|
| 348 | logical volumes} with certain polarization are made known to
|
|---|
| 349 | {\em polarization manager}. One example {\tt DetectorConstruction}
|
|---|
| 350 | might look like follows:
|
|---|
| 351 |
|
|---|
| 352 | \begin{verbatim}
|
|---|
| 353 | G4double Targetthickness = .010*mm;
|
|---|
| 354 | G4double Targetradius = 2.5*mm;
|
|---|
| 355 |
|
|---|
| 356 | G4Tubs *solidTarget =
|
|---|
| 357 | new G4Tubs("solidTarget",
|
|---|
| 358 | 0.0,
|
|---|
| 359 | Targetradius,
|
|---|
| 360 | Targetthickness/2,
|
|---|
| 361 | 0.0*deg,
|
|---|
| 362 | 360.0*deg );
|
|---|
| 363 |
|
|---|
| 364 | G4LogicalVolume * logicalTarget =
|
|---|
| 365 | new G4LogicalVolume(solidTarget,
|
|---|
| 366 | iron,
|
|---|
| 367 | "logicalTarget",
|
|---|
| 368 | 0,0,0);
|
|---|
| 369 |
|
|---|
| 370 | G4VPhysicalVolume * physicalTarget =
|
|---|
| 371 | new G4PVPlacement(0,G4ThreeVector(0.*mm, 0.*mm, 0.*mm),
|
|---|
| 372 | logicalTarget,
|
|---|
| 373 | "physicalTarget",
|
|---|
| 374 | worldLogical,
|
|---|
| 375 | false,
|
|---|
| 376 | 0);
|
|---|
| 377 |
|
|---|
| 378 | G4PolarizationManager * polMgr = G4PolarizationManager::GetInstance();
|
|---|
| 379 | polMgr->SetVolumePolarization(logicalTarget,G4ThreeVector(0.,0.,0.08));
|
|---|
| 380 | \end{verbatim}
|
|---|
| 381 | Once a logical volume is known to the {\tt G4PolarizationManager}, its
|
|---|
| 382 | polarization vector can be accessed from a macro file by its name,
|
|---|
| 383 | e.g.\ the polarization of the logical volume called ``logicalTarget''
|
|---|
| 384 | can be changed via
|
|---|
| 385 | \begin{verbatim}
|
|---|
| 386 | /polarization/volume/set logicalTarget 0. 0. -0.08
|
|---|
| 387 | \end{verbatim}
|
|---|
| 388 | Note, the polarization of a material is stated in the world frame.
|
|---|
| 389 |
|
|---|
| 390 | \subsection{Status of this document}
|
|---|
| 391 | 20.11.06 created by A.Sch{\"a}licke\\
|
|---|
| 392 |
|
|---|
| 393 | \begin{latexonly}
|
|---|
| 394 |
|
|---|
| 395 | \begin{thebibliography}{10}
|
|---|
| 396 |
|
|---|
| 397 | \bibitem{polIntro:McMaster:1961}
|
|---|
| 398 | W.~H.~McMaster, Rev.\ Mod.\ Phys.\ {\bf 33} (1961) 8; and references therein.
|
|---|
| 399 |
|
|---|
| 400 | \bibitem{polIntro:Laihem:thesis}
|
|---|
| 401 | K.~Laihem, PhD thesis, Humboldt University Berlin, Germany, (2007).
|
|---|
| 402 |
|
|---|
| 403 | %%EGS
|
|---|
| 404 | \bibitem{polIntro:Nelson:1985ec}
|
|---|
| 405 | W.~R.~Nelson, H.~Hirayama, D.~W.~O.\ Rogers,
|
|---|
| 406 | %``The Egs4 Code System,''
|
|---|
| 407 | SLAC-R-0265.
|
|---|
| 408 |
|
|---|
| 409 | \bibitem{polIntro:Floettmann:thesis}
|
|---|
| 410 | K.~Fl\"ottmann, PhD thesis, DESY Hamburg (1993); DESY-93-161.
|
|---|
| 411 |
|
|---|
| 412 | %kek extension
|
|---|
| 413 | \bibitem{polIntro:Namito:1993sv}
|
|---|
| 414 | Y.~Namito, S.~Ban, H.~Hirayama,
|
|---|
| 415 | %``Implementation of linearly polarized photon scattering into the EGS4 code,''
|
|---|
| 416 | Nucl.\ Instrum.\ Meth.\ A {\bf 332} (1993) 277.
|
|---|
| 417 |
|
|---|
| 418 | \bibitem{polIntro:Liu:2000ey}
|
|---|
| 419 | J.~C.~Liu, T.~Kotseroglou, W.~R.~Nelson, D.~C.~Schultz,
|
|---|
| 420 | %``Polarization study for NLC positron source using EGS4,''
|
|---|
| 421 | SLAC-PUB-8477.
|
|---|
| 422 | %Geant3
|
|---|
| 423 | \bibitem{polIntro:Brun:1985ps}
|
|---|
| 424 | R.~Brun, M.~Caillat, M.~Maire, G.~N.~Patrick, L.~Urban,
|
|---|
| 425 | %``The Geant3 Electromagnetic Shower Program And A Comparison With The Egs3
|
|---|
| 426 | %Code,''
|
|---|
| 427 | CERN-DD/85/1.
|
|---|
| 428 |
|
|---|
| 429 | %% E166
|
|---|
| 430 | \bibitem{polIntro:Alexander:2003fh}
|
|---|
| 431 | G.~Alexander {\it et al.},
|
|---|
| 432 | %``Undulator-based production of polarized positrons: A proposal for
|
|---|
| 433 | % the 50-GeV beam in the FFTB,''
|
|---|
| 434 | SLAC-TN-04-018, SLAC-PROPOSAL-E-166.
|
|---|
| 435 |
|
|---|
| 436 | \bibitem{polIntro:Hoogduin:thesis}
|
|---|
| 437 | J.~Hoogduin, PhD thesis, Rijksuniversiteit Groningen (1997).
|
|---|
| 438 |
|
|---|
| 439 | \bibitem{polIntro:Stokes:1852}
|
|---|
| 440 | G.~Stokes,
|
|---|
| 441 | Trans.\ Cambridge Phil.\ Soc.\ {\bf 9} (1852) 399.
|
|---|
| 442 |
|
|---|
| 443 |
|
|---|
| 444 | \end{thebibliography}
|
|---|
| 445 |
|
|---|
| 446 | \end{latexonly}
|
|---|
| 447 |
|
|---|
| 448 | \begin{htmlonly}
|
|---|
| 449 |
|
|---|
| 450 | \begin{enumerate}{10}
|
|---|
| 451 | \item
|
|---|
| 452 | W.~H.~McMaster, Rev.\ Mod.\ Phys.\ {\bf 33} (1961) 8; and references therein.
|
|---|
| 453 |
|
|---|
| 454 | \item
|
|---|
| 455 | K.~Laihem, PhD thesis, Humboldt University Berlin, Germany, (2007).
|
|---|
| 456 |
|
|---|
| 457 | %%EGS
|
|---|
| 458 | \item
|
|---|
| 459 | W.~R.~Nelson, H.~Hirayama, D.~W.~O.\ Rogers,
|
|---|
| 460 | %``The Egs4 Code System,''
|
|---|
| 461 | SLAC-R-0265.
|
|---|
| 462 |
|
|---|
| 463 | \item
|
|---|
| 464 | K.~Fl\"ottmann, PhD thesis, DESY Hamburg (1993); DESY-93-161.
|
|---|
| 465 |
|
|---|
| 466 | %kek extension
|
|---|
| 467 | \item
|
|---|
| 468 | Y.~Namito, S.~Ban, H.~Hirayama,
|
|---|
| 469 | %``Implementation of linearly polarized photon scattering into the EGS4 code,''
|
|---|
| 470 | Nucl.\ Instrum.\ Meth.\ A {\bf 332} (1993) 277.
|
|---|
| 471 |
|
|---|
| 472 | \item
|
|---|
| 473 | J.~C.~Liu, T.~Kotseroglou, W.~R.~Nelson, D.~C.~Schultz,
|
|---|
| 474 | %``Polarization study for NLC positron source using EGS4,''
|
|---|
| 475 | SLAC-PUB-8477.
|
|---|
| 476 | %Geant3
|
|---|
| 477 | \item
|
|---|
| 478 | R.~Brun, M.~Caillat, M.~Maire, G.~N.~Patrick, L.~Urban,
|
|---|
| 479 | %``The Geant3 Electromagnetic Shower Program And A Comparison With The Egs3
|
|---|
| 480 | %Code,''
|
|---|
| 481 | CERN-DD/85/1.
|
|---|
| 482 |
|
|---|
| 483 | %% E166
|
|---|
| 484 | \item
|
|---|
| 485 | G.~Alexander {\it et al.},
|
|---|
| 486 | %``Undulator-based production of polarized positrons: A proposal for
|
|---|
| 487 | % the 50-GeV beam in the FFTB,''
|
|---|
| 488 | SLAC-TN-04-018, SLAC-PROPOSAL-E-166.
|
|---|
| 489 |
|
|---|
| 490 | \item
|
|---|
| 491 | J.~Hoogduin, PhD thesis, Rijksuniversiteit Groningen (1997).
|
|---|
| 492 |
|
|---|
| 493 | \item
|
|---|
| 494 | G.~Stokes,
|
|---|
| 495 | Trans.\ Cambridge Phil.\ Soc.\ {\bf 9} (1852) 399.
|
|---|
| 496 |
|
|---|
| 497 | \end{enumerate}
|
|---|
| 498 |
|
|---|
| 499 | \end{htmlonly}
|
|---|
| 500 |
|
|---|
| 501 |
|
|---|
| 502 |
|
|---|
| 503 |
|
|---|
| 504 | % ======================================================================
|
|---|
| 505 | \newcommand{\Mvariable}[1]{r_e}
|
|---|
| 506 |
|
|---|
| 507 | \newpage
|
|---|
| 508 | \section{Ionization}\label{sec:polarizedIonization}
|
|---|
| 509 | \subsection{Method}
|
|---|
| 510 | The class {\em G4ePolarizedIonization} provides continuous and
|
|---|
| 511 | discrete energy losses of polarized electrons and positrons in a
|
|---|
| 512 | material. It evaluates polarization transfer and -- if the material
|
|---|
| 513 | is polarized -- asymmetries in the explicit delta rays production.
|
|---|
| 514 | The implementation baseline follows the approach derived for the
|
|---|
| 515 | class {\em G4eIonization} described in sections
|
|---|
| 516 | \ref{en_loss} and \ref{sec:em.eion}.
|
|---|
| 517 | For continuous energy losses the effects of a polarized beam or
|
|---|
| 518 | target are negligible provided the separation cut $T_{\rm cut}$ is
|
|---|
| 519 | small, and are therefore not considered separately. On the other
|
|---|
| 520 | hand, in the explicit production of delta rays by M{\o}ller or
|
|---|
| 521 | Bhabha scattering, the effects of polarization on total cross
|
|---|
| 522 | section and mean free path, on distribution of final state particles
|
|---|
| 523 | and the average polarization of final state particles are taken into
|
|---|
| 524 | account.
|
|---|
| 525 |
|
|---|
| 526 | % ----------------------------------------------------------------------
|
|---|
| 527 |
|
|---|
| 528 | \subsection{Total cross section and mean free path}
|
|---|
| 529 |
|
|---|
| 530 | Kinematics of Bhabha and M{\o}ller scattering is fixed by initial
|
|---|
| 531 | energy
|
|---|
| 532 | \begin{equation}
|
|---|
| 533 | \gamma=\frac{E_{k_1}}{m c^2}% =\frac{s}{2m^2}-1
|
|---|
| 534 | \end{equation}
|
|---|
| 535 | and variable
|
|---|
| 536 | \begin{equation}
|
|---|
| 537 | \epsilon = \frac{E_{p_2}-m c^2}{E_{k_1}-m c^2},
|
|---|
| 538 | \end{equation}
|
|---|
| 539 | which is the part of kinetic energy of initial particle carried out by
|
|---|
| 540 | scatter. Lower kinematic limit for $\epsilon$ is $0$, but in order
|
|---|
| 541 | to avoid divergencies in both total and differential cross sections
|
|---|
| 542 | one sets
|
|---|
| 543 | \begin{equation}
|
|---|
| 544 | \epsilon_{min}= x = \frac{T_{min}}{E_{k_1}-mc^2},
|
|---|
| 545 | \end{equation}
|
|---|
| 546 | where $T_{min}$ has meaning of minimal kinetic energy of secondary
|
|---|
| 547 | electron. And, $\epsilon_{\rm max}=1(1/2)$ for Bhabha(M{\o}ller)
|
|---|
| 548 | scatterings.
|
|---|
| 549 |
|
|---|
| 550 | % ----------------------------------------------------------------------
|
|---|
| 551 | \subsubsection{Total M{\o}ller cross section}
|
|---|
| 552 |
|
|---|
| 553 | The total cross section of the polarized M{\o}ller scattering can be expressed as follows
|
|---|
| 554 | \begin{equation}\label{totalMoller}
|
|---|
| 555 | \sigma^M_{pol}=\frac{2\pi\gamma^2 r_e^2}{(\gamma-1)^2(\gamma+1)}\left[
|
|---|
| 556 | \sigma^M_0 + \zeta_3^{(1)}\zeta_3^{(2)}\sigma^M_L
|
|---|
| 557 | + \left(\zeta_1^{(1)}\zeta_1^{(2)}+\zeta_2^{(1)}\zeta_2^{(2)}\right)\sigma^M_T\right],
|
|---|
| 558 | \end{equation}
|
|---|
| 559 | where the $r_e$ is classical electron radius, and
|
|---|
| 560 | \begin{eqnarray}
|
|---|
| 561 | \sigma^M_0&=&
|
|---|
| 562 | - \frac{1}{1 - x} + \frac{1}{x}
|
|---|
| 563 | - \frac{{\left( \gamma - 1 \right)}^2}{{\gamma}^2}
|
|---|
| 564 | \left(\frac{1}{2} - x \right)
|
|---|
| 565 | + \frac{ 2 - 4\,\gamma }{2\,{\gamma}^2}
|
|---|
| 566 | \,\ln \left(\frac{1-x}{x}\right)
|
|---|
| 567 | \nonumber\\
|
|---|
| 568 | \sigma^M_L&=&
|
|---|
| 569 | \frac{ \left( -3 + 2\,\gamma + {\gamma}^2 \right)
|
|---|
| 570 | \,\left( 1 - 2\,x \right) }{2\, {\gamma}^2}
|
|---|
| 571 | + \frac{2\,\gamma\,\left( -1 + 2\,\gamma \right)}{2\,
|
|---|
| 572 | {\gamma}^2} \,\ln \left(\frac{1-x}{x}\right)
|
|---|
| 573 | \nonumber\\
|
|---|
| 574 | \sigma^M_T&=&
|
|---|
| 575 | \frac{2\,\left( \gamma - 1 \right) \,\left( 2\,x -1 \right)}{2\,{\gamma}^2}
|
|---|
| 576 | + \frac{
|
|---|
| 577 | \left( 1 - 3\,\gamma \right) }{2\,{\gamma}^2} \,\ln \left(\frac{1-x}{x}\right)
|
|---|
| 578 | \label{mollertotal}
|
|---|
| 579 | \end{eqnarray}
|
|---|
| 580 |
|
|---|
| 581 | % ----------------------------------------------------------------------
|
|---|
| 582 | \subsubsection{Total Bhabha cross section}
|
|---|
| 583 |
|
|---|
| 584 | The total cross section of the polarized Bhabha scattering can be expressed as follows
|
|---|
| 585 | \begin{equation}\label{totalBhabha}
|
|---|
| 586 | \sigma^B_{pol}=\frac{2\pi r_e^2}{\gamma-1}
|
|---|
| 587 | \left[
|
|---|
| 588 | \sigma^B_0 + \zeta_3^{(1)}\zeta_3^{(2)}\sigma^B_L + \left(\zeta_1^{(1)}\zeta_1^{(2)} + \zeta_2^{(1)}\zeta_2^{(2)}\right)\sigma^B_T
|
|---|
| 589 | \right],
|
|---|
| 590 | \end{equation}
|
|---|
| 591 | where
|
|---|
| 592 | \begin{eqnarray}
|
|---|
| 593 | \sigma^B_0&=&
|
|---|
| 594 | \frac{1 - x}{2\,\left( \gamma - 1 \right) \,x} +
|
|---|
| 595 | \frac{2\,\left( -1 + 3\,x - 6\,x^2 + 4\,x^3 \right) }
|
|---|
| 596 | {3\,{\left( 1 + \gamma \right) }^3}
|
|---|
| 597 | \nonumber\\
|
|---|
| 598 | &+&\frac{-1 - 5\,x + 12\,x^2 - 10\,x^3 + 4\,x^4}{2\,\left( 1 + \gamma \right) \,x}
|
|---|
| 599 | + \frac{-3 - x + 8\,x^2 - 4\,x^3 - \ln (x)}{{\left( 1 + \gamma \right) }^2}
|
|---|
| 600 | \nonumber\\
|
|---|
| 601 | &+&\frac{3 + 4\,x - 9\,x^2 + 3\,x^3 - x^4 + 6\,x\,\ln (x)}{3\,x}
|
|---|
| 602 | \nonumber\\
|
|---|
| 603 | \sigma^B_L&=&
|
|---|
| 604 | \frac{2\,\left( 1 - 3\,x + 6\,x^2 - 4\,x^3 \right) }{3\,{\left( 1 + \gamma \right) }^3} +
|
|---|
| 605 | \frac{-14 + 15\,x - 3\,x^2 + 2\,x^3 - 9\,\ln (x)}{3\,\left( 1 + \gamma \right) }
|
|---|
| 606 | \nonumber\\
|
|---|
| 607 | &+&\frac{5 + 3\,x - 12\,x^2 + 4\,x^3 + 3\,\ln (x)}{3\,{\left( 1 + \gamma \right) }^2} +
|
|---|
| 608 | \frac{7 - 9\,x + 3\,x^2 - x^3 + 6\,\ln (x)}{3}
|
|---|
| 609 | \nonumber\\
|
|---|
| 610 | \sigma^B_T&=&
|
|---|
| 611 | \frac{2\,\left( -1 + 3\,x - 6\,x^2 + 4\,x^3 \right) }{3\,{\left( 1 + \gamma \right) }^3} +
|
|---|
| 612 | \frac{-7 - 3\,x + 18\,x^2 - 8\,x^3 - 3\,\ln (x)}{3\,{\left( 1 + \gamma \right) }^2}
|
|---|
| 613 | \nonumber\\
|
|---|
| 614 | &+&\frac{5 + 3\,x - 12\,x^2 + 4\,x^3 + 9\,\ln (x)}{6\,\left( 1 + \gamma \right) }
|
|---|
| 615 | \end{eqnarray}
|
|---|
| 616 |
|
|---|
| 617 | % ----------------------------------------------------------------------
|
|---|
| 618 | \subsubsection{Mean free path}
|
|---|
| 619 |
|
|---|
| 620 | With the help of the total polarized M{\o}ller cross section
|
|---|
| 621 | one can define a longitudinal asymmetry $A^M_L$ and the transverse
|
|---|
| 622 | asymmetry $A^M_T$, by
|
|---|
| 623 |
|
|---|
| 624 | \begin{tabular}{ccc}
|
|---|
| 625 | $ A^M_L = \displaystyle \frac{\sigma^M_L}{\sigma^M_0} \quad$ & and &
|
|---|
| 626 | $\quad A^M_T = \displaystyle \frac{\sigma^M_T}{\sigma^M_0}\;$.
|
|---|
| 627 | \end{tabular}
|
|---|
| 628 |
|
|---|
| 629 | Similarly, using the polarized Bhabha cross section one can introduce a
|
|---|
| 630 | longitudinal asymmetry $A^B_L$ and the transverse asymmetry $A^B_T$
|
|---|
| 631 | via
|
|---|
| 632 |
|
|---|
| 633 | \begin{tabular}{ccc}
|
|---|
| 634 | $ A^B_L = \displaystyle \frac{\sigma^B_L}{\sigma^B_0} \quad$ & and &
|
|---|
| 635 | $\quad A^B_T = \displaystyle \frac{\sigma^B_T}{\sigma^B_0}\;$.
|
|---|
| 636 | \end{tabular}
|
|---|
| 637 |
|
|---|
| 638 | These asymmetries are depicted in figures \ref{pol.moller1} and
|
|---|
| 639 | \ref{pol.bhabha1} respectively.
|
|---|
| 640 |
|
|---|
| 641 | If both beam and target are polarized the mean free path as defined in
|
|---|
| 642 | section \ref{sec:em.eion} has to be modified. In the class {\em
|
|---|
| 643 | G4ePolarizedIonization} the polarized mean free path $\lambda^{\rm
|
|---|
| 644 | pol}$ is derived from the unpolarized mean free path $\lambda^{\rm
|
|---|
| 645 | unpol}$ via
|
|---|
| 646 | \begin{equation}
|
|---|
| 647 | \lambda^{\rm pol} = \frac{\lambda^{\rm unpol}}{1 +
|
|---|
| 648 | \zeta_3^{(1)}\zeta_3^{(2)}\, A_L +
|
|---|
| 649 | \left(\zeta_1^{(1)}\zeta_1^{(2)}+\zeta_2^{(1)}\zeta_2^{(2)}\right) \,A_T}
|
|---|
| 650 | \end{equation}
|
|---|
| 651 |
|
|---|
| 652 | %
|
|---|
| 653 | \begin{figure}[t]
|
|---|
| 654 | \begin{center}
|
|---|
| 655 | \includegraphics[width=6.5cm]{electromagnetic/standard/plots/MollerTA1.eps}
|
|---|
| 656 | \includegraphics[width=6.5cm]{electromagnetic/standard/plots/MollerTA2.eps}
|
|---|
| 657 | \end{center}
|
|---|
| 658 | \caption{\label{pol.moller1}M{\o}ller total cross section
|
|---|
| 659 | asymmetries depending on the total energy of the incoming
|
|---|
| 660 | electron, with a cut-off $T_{\rm cut}= 1 {\rm keV}$. Transverse
|
|---|
| 661 | asymmetry is plotted in blue, longitudinal asymmetry in red. Left
|
|---|
| 662 | part, between 0.5 MeV and 2 MeV, right part up to 10 MeV.}
|
|---|
| 663 | %\end{figure}
|
|---|
| 664 | %
|
|---|
| 665 | %\begin{figure}[t]
|
|---|
| 666 | \begin{center}
|
|---|
| 667 | \includegraphics[width=6.5cm]{electromagnetic/standard/plots/BhabhaTA1.eps}
|
|---|
| 668 | \includegraphics[width=6.5cm]{electromagnetic/standard/plots/BhabhaTA2.eps}
|
|---|
| 669 | \end{center}
|
|---|
| 670 | \caption{\label{pol.bhabha1}Bhabha total cross section
|
|---|
| 671 | asymmetries depending on the total energy of the incoming
|
|---|
| 672 | positron, with a cut-off $T_{\rm cut}= 1 {\rm keV}$. Transverse
|
|---|
| 673 | asymmetry is plotted in blue, longitudinal asymmetry in red. Left
|
|---|
| 674 | part, between 0.5 MeV and 2 MeV, right part up to 10 MeV.}
|
|---|
| 675 | \end{figure}
|
|---|
| 676 |
|
|---|
| 677 |
|
|---|
| 678 |
|
|---|
| 679 |
|
|---|
| 680 | % ----------------------------------------------------------------------
|
|---|
| 681 | \subsection{Sampling the final state}
|
|---|
| 682 |
|
|---|
| 683 | \subsubsection{Differential cross section}
|
|---|
| 684 |
|
|---|
| 685 | The polarized differential cross section is rather complicated,
|
|---|
| 686 | the full result can be found in \cite{polIoni:Star:2006,polIoni:Ford:1957,polIoni:Stehle:1957}.
|
|---|
| 687 | In {\em G4PolarizedMollerCrossSection} the complete result is
|
|---|
| 688 | available taking all mass effects into account, only binding effects
|
|---|
| 689 | are neglected.
|
|---|
| 690 | Here we state only the ultra-relativistic approximation (URA), to show
|
|---|
| 691 | the general dependencies.
|
|---|
| 692 | \begin{eqnarray}
|
|---|
| 693 | &&\frac{d\sigma_{URA}^M}{d\epsilon d\varphi}=
|
|---|
| 694 | \frac{{{r_\epsilon}}^2}{ \gamma + 1} \times
|
|---|
| 695 | \nonumber\\
|
|---|
| 696 | &&\Bigg[
|
|---|
| 697 | \frac{{\left( 1 - \epsilon + \epsilon^2 \right) }^2}{4\,{\left( \epsilon - 1 \right) }^2\,\epsilon^2} +
|
|---|
| 698 | \zeta_3^{(1)}\zeta_3^{(2)}\frac{2 - \epsilon +
|
|---|
| 699 | \epsilon^2}{-4\,\epsilon ( 1 - \epsilon)} +
|
|---|
| 700 | \left(\zeta_2^{(1)}\zeta_2^{(2)} -\zeta_1^{(1)}\zeta_1^{(2)}\right)\frac{1}{4}
|
|---|
| 701 | \nonumber\\
|
|---|
| 702 | &&+
|
|---|
| 703 | \left(\xi_3^{(1)}\zeta_3^{(1)} - \xi_3^{(2)}\zeta_3^{(2)}\right)
|
|---|
| 704 | \frac{1 - \epsilon + 2\,\epsilon^2}{4\,\left( 1 - \epsilon \right) \,\epsilon^2}
|
|---|
| 705 | + \left(\xi_3^{(2)}\zeta_3^{(1)} - \xi_3^{(1)}\zeta_3^{(2)}\right)
|
|---|
| 706 | \frac{2 - 3\,\epsilon + 2\,\epsilon^2}{4\,{\left( 1 - \epsilon \right) }^2\,\epsilon}
|
|---|
| 707 | \Bigg] \nonumber\\
|
|---|
| 708 | &&
|
|---|
| 709 | \end{eqnarray}
|
|---|
| 710 | %
|
|---|
| 711 | The corresponding cross section for Bhabha cross section is
|
|---|
| 712 | implemented in {\em G4PolarizedBhabhaCrossSection}. In the
|
|---|
| 713 | ultra-relativistic approximation it reads
|
|---|
| 714 | \begin{eqnarray}
|
|---|
| 715 | &&\frac{d\sigma_{URA}^B}{d\epsilon d\varphi}=
|
|---|
| 716 | \frac{{{r_\epsilon}}^2}{ \gamma - 1} \times
|
|---|
| 717 | \nonumber\\
|
|---|
| 718 | &&\Bigg[
|
|---|
| 719 | \frac{{\left( 1 - \epsilon + \epsilon^2 \right) }^2}{4\,\epsilon^2} +
|
|---|
| 720 | \zeta_3^{(1)}\zeta_3^{(2)}\frac{\left( \epsilon - 1 \right) \,\left( 2 - \epsilon + \epsilon^2 \right) }{4\,\epsilon}
|
|---|
| 721 | +\left(\zeta_2^{(1)}\zeta_2^{(2)} -\zeta_1^{(1)}\zeta_1^{(2)}\right)\frac{(1-\epsilon)^2}{4}
|
|---|
| 722 | \nonumber\\
|
|---|
| 723 | &&+
|
|---|
| 724 | \left(\xi_3^{(1)}\zeta_3^{(1)} - \xi_3^{(2)}\zeta_3^{(2)}\right)\frac{1 - 2\,\epsilon + 3\,\epsilon^2 - 2\,\epsilon^3}{4\,\epsilon^2}
|
|---|
| 725 | + \left(\xi_3^{(2)}\zeta_3^{(1)} - \xi_3^{(1)}\zeta_3^{(2)}\right)\frac{ 2 - 3\,\epsilon + 2\,\epsilon^2}{4\epsilon}
|
|---|
| 726 | \Bigg] \nonumber\\
|
|---|
| 727 | &&
|
|---|
| 728 | \end{eqnarray}
|
|---|
| 729 | where
|
|---|
| 730 | \begin{tabular}[t]{l@{\ = \ }l}
|
|---|
| 731 | $r_e$ & classical electron radius \\
|
|---|
| 732 | $\gamma$ & $E_{k_1}/m_e c^2$ \\
|
|---|
| 733 | $\epsilon$ & ($E_{p_1}-m_e c^2)/(E_{k_1}-m_e c^2)$ \\
|
|---|
| 734 | $E_{k_1}$ & energy of the incident electron/positron \\
|
|---|
| 735 | $E_{p_1}$ & energy of the scattered electron/positron \\
|
|---|
| 736 | $m_e c^2$ & electron mass \\
|
|---|
| 737 | $\bvec{\zeta}^{(1)}$ & Stokes vector of the incoming electron/positron \\
|
|---|
| 738 | $\bvec{\zeta}^{(2)}$ & Stokes vector of the target electron \\
|
|---|
| 739 | $\bvec{\xi}^{(1)}$ & Stokes vector of the outgoing electron/positron \\
|
|---|
| 740 | $\bvec{\xi}^{(2)}$ & Stokes vector of the outgoing (2nd) electron .
|
|---|
| 741 | \end{tabular}
|
|---|
| 742 |
|
|---|
| 743 | \subsubsection{Sampling}
|
|---|
| 744 |
|
|---|
| 745 | The delta ray is sampled according to methods discussed in Chapter
|
|---|
| 746 | 2. After exploitation of the symmetry in the M{\o}ller cross section
|
|---|
| 747 | under exchanging $\epsilon$ versus $(1-\epsilon)$, the differential
|
|---|
| 748 | cross section can be approximated by a simple function $f^M(\epsilon)$:
|
|---|
| 749 | \begin{equation}
|
|---|
| 750 | f^M(\epsilon) = \frac{1}{\epsilon^2} \frac{\epsilon_0}{1-2\epsilon_0}
|
|---|
| 751 | \end{equation}
|
|---|
| 752 | with the kinematic limits given by
|
|---|
| 753 | \begin{equation}
|
|---|
| 754 | \epsilon_0 = \frac{T_{\rm cut}}{E_{k_1}-m_e c^2} \le \epsilon \le
|
|---|
| 755 | \frac{1}{2}
|
|---|
| 756 | \end{equation}
|
|---|
| 757 | A similar function $f^B(\epsilon)$ can be found for Bhabha scattering:
|
|---|
| 758 | \begin{equation}
|
|---|
| 759 | f^B(\epsilon) = \frac{1}{\epsilon^2} \frac{\epsilon_0}{1-\epsilon_0}
|
|---|
| 760 | \end{equation}
|
|---|
| 761 | with the kinematic limits given by
|
|---|
| 762 | \begin{equation}
|
|---|
| 763 | \epsilon_0 = \frac{T_{\rm cut}}{E_{k_1}-m_e c^2} \le \epsilon \le 1
|
|---|
| 764 | \end{equation}
|
|---|
| 765 |
|
|---|
| 766 | The kinematic of the delta ray production is constructed by the
|
|---|
| 767 | following steps:
|
|---|
| 768 | \begin{enumerate}
|
|---|
| 769 | \item $\epsilon$ is sampled from $f(\epsilon)$
|
|---|
| 770 | \item calculate the differential cross section, depending on the
|
|---|
| 771 | initial polarizations $\bvec{\zeta}^{(1)}$ and $\bvec{\zeta}^{(2)}$.
|
|---|
| 772 | \item $\epsilon$ is accepted with the probability defined by ratio
|
|---|
| 773 | of the differential cross section over the approximation
|
|---|
| 774 | function.
|
|---|
| 775 | \item The $\varphi$ is diced uniformly.
|
|---|
| 776 | \item $\varphi$ is determined from the differential cross section,
|
|---|
| 777 | depending on the initial polarizations $\bvec{\zeta}^{(1)}$ and $\bvec{\zeta}^{(2)}$
|
|---|
| 778 | \end{enumerate}
|
|---|
| 779 | Note, for initial states without transverse polarization components, the
|
|---|
| 780 | $\varphi$ distribution is always uniform.
|
|---|
| 781 | In figure \ref{pol.moller2} the asymmetries indicate the influence of
|
|---|
| 782 | polarization. In general the effect is largest around
|
|---|
| 783 | $\epsilon=\frac{1}{2}$.
|
|---|
| 784 | %
|
|---|
| 785 | %\begin{figure}[ht]
|
|---|
| 786 | %\includegraphics[scale=0.5]{electromagnetic/standard/plots/MollerXS.eps}
|
|---|
| 787 | %\caption{M{\o}ller differential cross section in arbitrary units. Black - unpolarized, Red - (+-),Blue (++).
|
|---|
| 788 | %This cross section is symmetric around point $\epsilon=1/2$.
|
|---|
| 789 | %}
|
|---|
| 790 | %\end{figure}
|
|---|
| 791 | %\begin{figure}[ht]
|
|---|
| 792 | %\includegraphics[scale=0.5]{electromagnetic/standard/plots/BhabhaXS.eps}
|
|---|
| 793 | %\caption{Bhabha differential cross section in arbitrary units. Black - unpolarized, Red - (+-),Blue (++)}
|
|---|
| 794 | %\end{figure}
|
|---|
| 795 | %
|
|---|
| 796 | \begin{figure}[ht]
|
|---|
| 797 | \begin{center}
|
|---|
| 798 | \includegraphics[width=6.5cm]{electromagnetic/standard/plots/MollerAsym.eps}
|
|---|
| 799 | \includegraphics[width=6.5cm]{electromagnetic/standard/plots/BhabhaAsym.eps}
|
|---|
| 800 | \end{center}
|
|---|
| 801 | %\caption{M{\o}ller differential cross section asymmetries in\%.
|
|---|
| 802 | %Red - ZZ, Gren - XX, Blue - YY, LightBlue -ZX}
|
|---|
| 803 | \caption{\label{pol.moller2}Differential cross section asymmetries in\% for M{\o}ller
|
|---|
| 804 | (left) and Bhabha (right) scattering ( red - $A_{ZZ}(\epsilon)$,
|
|---|
| 805 | green - $A_{XX}(\epsilon)$, blue - $A_{YY}(\epsilon)$, lightblue - $A_{ZX}(\epsilon)$)}
|
|---|
| 806 | \end{figure}
|
|---|
| 807 |
|
|---|
| 808 | After both $\phi$ and $\epsilon$ are known, the kinematic can be
|
|---|
| 809 | constructed fully. Using momentum conservation the momenta of the
|
|---|
| 810 | scattered incident particle and the ejected electron are constructed
|
|---|
| 811 | in global coordinate system.
|
|---|
| 812 |
|
|---|
| 813 | \subsubsection{Polarization transfer}
|
|---|
| 814 |
|
|---|
| 815 | After the kinematics is fixed the polarization properties of the
|
|---|
| 816 | outgoing particles are determined. Using the dependence of
|
|---|
| 817 | the differential cross section on the final state polarization a mean
|
|---|
| 818 | polarization is calculated according to method described in section
|
|---|
| 819 | \ref{sec:pol.intro}.
|
|---|
| 820 |
|
|---|
| 821 | The resulting polarization transfer functions $\xi^{(1,2)}_3(\epsilon)$
|
|---|
| 822 | are depicted in figures \ref{pol.moller3} and \ref{pol.bhabha3}.
|
|---|
| 823 |
|
|---|
| 824 | \begin{figure}[ht]
|
|---|
| 825 | \includegraphics[width=6.5cm]{electromagnetic/standard/plots/MollerTransfer1.eps}
|
|---|
| 826 | \includegraphics[width=6.5cm]{electromagnetic/standard/plots/MollerTransfer2.eps}
|
|---|
| 827 | \caption{\label{pol.moller3}Polarization transfer functions in
|
|---|
| 828 | M{\o}ller scattering. Longitudinal polarization
|
|---|
| 829 | $\xi^{(2)}_3$ of electron with energy $E_{p_2}$ in blue; longitudinal
|
|---|
| 830 | polarization $\xi^{(1)}_3$ of second electron in red. Kinetic energy of incoming electron $T_{k_1} = 10 {\rm MeV}$}.
|
|---|
| 831 | \end{figure}
|
|---|
| 832 |
|
|---|
| 833 | \begin{figure}[ht]
|
|---|
| 834 | \includegraphics[width=6.5cm]{electromagnetic/standard/plots/BhabhaTransfer1.eps}
|
|---|
| 835 | \includegraphics[width=6.5cm]{electromagnetic/standard/plots/BhabhaTransfer2.eps}
|
|---|
| 836 | \caption{\label{pol.bhabha3}Polarization Transfer in Bhabha scattering.
|
|---|
| 837 | Longitudinal polarization
|
|---|
| 838 | $\xi^{(2)}_3$ of electron with energy $E_{p_2}$ in blue; longitudinal
|
|---|
| 839 | polarization $\xi^{(1)}_3$ of scattered positron. Kinetic energy of incoming positron $T_{k_1} = 10 {\rm MeV}$}.
|
|---|
| 840 | \end{figure}
|
|---|
| 841 |
|
|---|
| 842 | % ----------------------------------------------------------------------
|
|---|
| 843 | \subsection{Status of this document}
|
|---|
| 844 | 20.11.06 created by P.Starovoitov\\
|
|---|
| 845 | 21.02.07 minor update by A.Sch{\"a}licke\\
|
|---|
| 846 |
|
|---|
| 847 | \begin{latexonly}
|
|---|
| 848 |
|
|---|
| 849 | \begin{thebibliography}{9}
|
|---|
| 850 | \bibitem{polIoni:Star:2006} P.~Starovoitov {\em et.al.}, in preparation.
|
|---|
| 851 | \bibitem{polIoni:Ford:1957}
|
|---|
| 852 | G.~W.~Ford, C.~J.~Mullin,
|
|---|
| 853 | Phys.~Rev.\ {\bf 108} (1957) 477.
|
|---|
| 854 | \bibitem{polIoni:Stehle:1957}
|
|---|
| 855 | P.~Stehle,
|
|---|
| 856 | Phys.~Rev.\ {\bf 110} (1958) 1458.
|
|---|
| 857 |
|
|---|
| 858 | \end{thebibliography}
|
|---|
| 859 |
|
|---|
| 860 | \end{latexonly}
|
|---|
| 861 |
|
|---|
| 862 | \begin{htmlonly}
|
|---|
| 863 |
|
|---|
| 864 | \subsection{Bibliography}
|
|---|
| 865 | \begin{enumerate}
|
|---|
| 866 | \item %{Star:2006}
|
|---|
| 867 | P.~Starovoitov {\em et.al.}, in preparation.
|
|---|
| 868 | \item %{Ford:1957}
|
|---|
| 869 | G.~W.~Ford, C.~J.~Mullin,
|
|---|
| 870 | Phys.~Rev.\ {\bf 108} (1957) 477.
|
|---|
| 871 | \item % {Stehle:1957}
|
|---|
| 872 | P.~Stehle,
|
|---|
| 873 | Phys.~Rev.\ {\bf 110} (1958) 1458.
|
|---|
| 874 | \end{enumerate}
|
|---|
| 875 |
|
|---|
| 876 | \end{htmlonly}
|
|---|
| 877 |
|
|---|
| 878 |
|
|---|
| 879 | \clearpage
|
|---|
| 880 | % ======================================================================
|
|---|
| 881 | \section{Positron - Electron Annihilation}
|
|---|
| 882 | \subsection{Method}
|
|---|
| 883 | The class {\em G4eplusPolarizedAnnihilation} simulates
|
|---|
| 884 | annihilation of polarized positrons with electrons in a material.
|
|---|
| 885 | The implementation baseline follows the approach derived for the class
|
|---|
| 886 | {\em G4eplusAnnihilation} described in section
|
|---|
| 887 | \ref{sec:em.annil}.
|
|---|
| 888 | It evaluates polarization transfer and -- if the material is polarized --
|
|---|
| 889 | asymmetries in the produced photons. Thus, it takes the effects of
|
|---|
| 890 | polarization on total cross section and mean free path, on
|
|---|
| 891 | distribution of final state photons into account. And
|
|---|
| 892 | calculates the average polarization of these generated photons.
|
|---|
| 893 | The material electrons are assumed to be free and at rest.
|
|---|
| 894 |
|
|---|
| 895 | \subsection{Total cross section and mean free path}
|
|---|
| 896 | Kinematics of annihilation process is fixed by initial energy
|
|---|
| 897 | \begin{equation}
|
|---|
| 898 | \gamma=\frac{E_{k_1}}{mc^2}%=\frac{s}{2(mc^2)^2}-1
|
|---|
| 899 | \end{equation}
|
|---|
| 900 | and variable
|
|---|
| 901 | \begin{equation}
|
|---|
| 902 | \epsilon = \frac{E_{p_1}}{E_{k_1}+mc^2},
|
|---|
| 903 | \end{equation}
|
|---|
| 904 | which is the part of total energy available in initial state carried out by first photon.
|
|---|
| 905 | This variable has the following kinematical limits
|
|---|
| 906 | \begin{equation}
|
|---|
| 907 | \frac{1}{2}\left(1-\sqrt{\frac{\gamma-1}{\gamma+1}}\right)\;<\;
|
|---|
| 908 | \epsilon
|
|---|
| 909 | \;<\;\frac{1}{2}\left(1+\sqrt{\frac{\gamma-1}{\gamma+1}}\right)
|
|---|
| 910 | \;.
|
|---|
| 911 | \end{equation}
|
|---|
| 912 |
|
|---|
| 913 | % ----------------------------------------------------------------------
|
|---|
| 914 | \subsubsection{Total Cross Section}
|
|---|
| 915 | The total cross section of the annihilation of a polarized $e^+e^-$
|
|---|
| 916 | pair into two photons could be expressed as follows
|
|---|
| 917 | \begin{equation}\label{totalAnnih}
|
|---|
| 918 | \sigma^A_{pol}=\frac{\pi r_e^2}{\gamma+1}\left[
|
|---|
| 919 | \sigma^A_0 + \zeta_3^{(1)}\zeta_3^{(2)}\sigma^A_L + \left(\zeta_1^{(1)}\zeta_1^{(2)}+\zeta_2^{(1)}\zeta_2^{(2)}\right)\sigma^A_T\right],
|
|---|
| 920 | \end{equation}
|
|---|
| 921 | where
|
|---|
| 922 | \renewcommand{\Mvariable}[1]{\gamma}
|
|---|
| 923 | \begin{equation}
|
|---|
| 924 | \sigma^A_0=
|
|---|
| 925 | \frac{- \left( 3 + \Mvariable{gam} \right) \,{\sqrt{-1 + {\Mvariable{gam}}^2}} +
|
|---|
| 926 | \left( 1 + \Mvariable{gam}\,\left( 4 + \Mvariable{gam} \right) \right) \,
|
|---|
| 927 | \ln (\Mvariable{gam} + {\sqrt{-1 + {\Mvariable{gam}}^2}})}{4\,
|
|---|
| 928 | \left( {\Mvariable{gam}}^2 - 1 \right) }
|
|---|
| 929 | \end{equation}
|
|---|
| 930 | \begin{equation}
|
|---|
| 931 | \sigma^A_L=
|
|---|
| 932 | \frac{- {\sqrt{-1 + {\Mvariable{gam}}^2}}\,
|
|---|
| 933 | \left( 5 + \Mvariable{gam}\,\left( 4 + 3\,\Mvariable{gam} \right) \right) +
|
|---|
| 934 | \left( 3 + \Mvariable{gam}\,\left( 7 + \Mvariable{gam} + {\Mvariable{gam}}^2 \right) \right) \,
|
|---|
| 935 | \ln (\Mvariable{gam} + {\sqrt{{\Mvariable{gam}}^2-1 }})}{4\,
|
|---|
| 936 | {\left( \Mvariable{gam} -1\right) }^2\,\left( 1 + \Mvariable{gam} \right) }
|
|---|
| 937 | \end{equation}
|
|---|
| 938 | \begin{equation}
|
|---|
| 939 | \sigma^A_T=
|
|---|
| 940 | \frac{\left( 5 + \Mvariable{gam} \right) \,{\sqrt{-1 + {\Mvariable{gam}}^2}} -
|
|---|
| 941 | \left( 1 + 5\,\Mvariable{gam} \right) \,\ln (\Mvariable{gam} + {\sqrt{-1 + {\Mvariable{gam}}^2}})}
|
|---|
| 942 | {4\,{\left( -1 + \Mvariable{gam} \right) }^2\,\left( 1 + \Mvariable{gam} \right) }
|
|---|
| 943 | \end{equation}
|
|---|
| 944 |
|
|---|
| 945 |
|
|---|
| 946 | \subsubsection{Mean free path}
|
|---|
| 947 |
|
|---|
| 948 | With the help of the total polarized annihilation cross section
|
|---|
| 949 | one can define a longitudinal asymmetry $A^A_L$ and the transverse
|
|---|
| 950 | asymmetry $A^A_T$, by
|
|---|
| 951 |
|
|---|
| 952 | \begin{tabular}{ccc}
|
|---|
| 953 | $ A^A_L = \displaystyle \frac{\sigma^A_L}{\sigma^A_0} \quad$ & and &
|
|---|
| 954 | $\quad A^A_T = \displaystyle \frac{\sigma^A_T}{\sigma^A_0}\;$.
|
|---|
| 955 | \end{tabular}
|
|---|
| 956 |
|
|---|
| 957 | These asymmetries are depicted in figure \ref{pol.annihi1}.
|
|---|
| 958 |
|
|---|
| 959 | If both incident positron and target electron are polarized the mean
|
|---|
| 960 | free path as defined in section \ref{sec:em.annil} has to be
|
|---|
| 961 | modified. The polarized mean free path $\lambda^{\rm pol}$ is derived
|
|---|
| 962 | from the unpolarized mean free path $\lambda^{\rm unpol}$ via
|
|---|
| 963 | \begin{equation}
|
|---|
| 964 | \lambda^{\rm pol} = \frac{\lambda^{\rm unpol}}{1 +
|
|---|
| 965 | \zeta_3^{(1)}\zeta_3^{(2)}\, A_L +
|
|---|
| 966 | \left(\zeta_1^{(1)}\zeta_1^{(2)}+\zeta_2^{(1)}\zeta_2^{(2)}\right) \,A_T}
|
|---|
| 967 | \end{equation}
|
|---|
| 968 |
|
|---|
| 969 | \begin{figure}[ht]
|
|---|
| 970 | \begin{center}
|
|---|
| 971 | \includegraphics[width=6.5cm]{electromagnetic/standard/plots/AnnihTA1.eps}
|
|---|
| 972 | \includegraphics[width=6.5cm]{electromagnetic/standard/plots/AnnihTA2.eps}
|
|---|
| 973 | \end{center}
|
|---|
| 974 | \caption{\label{pol.annihi1}Annihilation total cross section asymmetries depending on the
|
|---|
| 975 | total energy of the incoming positron $E_{k_1}$. The transverse asymmetry
|
|---|
| 976 | is shown in blue, the longitudinal asymmetry in red. }
|
|---|
| 977 | \end{figure}
|
|---|
| 978 |
|
|---|
| 979 | \clearpage
|
|---|
| 980 |
|
|---|
| 981 | % ----------------------------------------------------------------------
|
|---|
| 982 | \subsection{Sampling the final state}
|
|---|
| 983 | \subsubsection{Differential Cross Section}
|
|---|
| 984 | The fully polarized differential cross section is implemented in the
|
|---|
| 985 | class {\em G4PolarizedAnnihilationCrossSection}, which takes all mass
|
|---|
| 986 | effects into account, but binding effects are neglected \cite{polAnnihi:Star:2006,polAnnihi:Page:1957}.
|
|---|
| 987 | In the ultra-relativistic approximation (URA) and concentrating on
|
|---|
| 988 | longitudinal polarization states only the cross section is
|
|---|
| 989 | rather simple:
|
|---|
| 990 | \begin{eqnarray}
|
|---|
| 991 | \frac{d\sigma_{URA}^A}{d\epsilon d\varphi} & = &
|
|---|
| 992 | \frac{{{r_e}}^2}{ \gamma - 1} \times
|
|---|
| 993 | \Bigg(
|
|---|
| 994 | \frac{1 - 2\,\epsilon + 2\,\epsilon^2}{8\,\epsilon - 8\,\epsilon^2}\left(1 + \zeta_3^{(1)}\zeta_3^{(2)}\right)
|
|---|
| 995 | \nonumber\\
|
|---|
| 996 | &&\quad\quad
|
|---|
| 997 | + \frac{ \left( 1 - 2\,\epsilon \right) \,\left( \zeta _{3}^{(1)} + \zeta _{3}^{(2)} \right) \,
|
|---|
| 998 | \left( \xi _{3}^{(1)} - \xi _{3}^{(2)} \right) }{8\,\left( \epsilon -1 \right) \,\epsilon}
|
|---|
| 999 | \Bigg)
|
|---|
| 1000 | \end{eqnarray}
|
|---|
| 1001 | %
|
|---|
| 1002 | where
|
|---|
| 1003 | \begin{tabular}[t]{l@{\ = \ }l}
|
|---|
| 1004 | $r_e$ & classical electron radius \\
|
|---|
| 1005 | $\gamma$ & $E_{k_1}/m_e c^2$ \\
|
|---|
| 1006 | $E_{k_1}$ & energy of the incident positron \\
|
|---|
| 1007 | $m_e c^2$ & electron mass \\
|
|---|
| 1008 | $\bvec{\zeta}^{(1)}$ & Stokes vector of the incoming positron \\
|
|---|
| 1009 | $\bvec{\zeta}^{(2)}$ & Stokes vector of the target electron \\
|
|---|
| 1010 | $\bvec{\xi}^{(1)}$ & Stokes vector of the 1st photon \\
|
|---|
| 1011 | $\bvec{\xi}^{(2)}$ & Stokes vector of the 2nd photon .
|
|---|
| 1012 | \end{tabular}
|
|---|
| 1013 | %
|
|---|
| 1014 | \begin{figure}[ht]
|
|---|
| 1015 | \begin{center}
|
|---|
| 1016 | \includegraphics[width=9.5cm]{electromagnetic/standard/plots/AnnihXS.eps}
|
|---|
| 1017 | \end{center}
|
|---|
| 1018 | \caption{Annihilation differential cross section in arbitrary
|
|---|
| 1019 | units. Black line corresponds to unpolarized cross section;
|
|---|
| 1020 | red line -- to the antiparallel spins of initial particles, and blue line -- to the parallel spins.
|
|---|
| 1021 | Kinetic energy of the incoming positron $T_{k_1} = 10 {\rm MeV}$.}
|
|---|
| 1022 | \end{figure}
|
|---|
| 1023 |
|
|---|
| 1024 | \subsubsection{Sampling}
|
|---|
| 1025 |
|
|---|
| 1026 | The photon energy is sampled according to methods discussed in Chapter
|
|---|
| 1027 | 2. After exploitation of the symmetry in the Annihilation cross section
|
|---|
| 1028 | under exchanging $\epsilon$ versus $(1-\epsilon)$, the differential
|
|---|
| 1029 | cross section can be approximated by a simple function $f(\epsilon)$:
|
|---|
| 1030 | \begin{equation}
|
|---|
| 1031 | f(\epsilon) = \frac{1}{\epsilon}
|
|---|
| 1032 | \ln^{-1}\left(\frac{\epsilon_{\rm max}}{\epsilon_{\rm min}}\right)
|
|---|
| 1033 | \end{equation}
|
|---|
| 1034 | with the kinematic limits given by
|
|---|
| 1035 | \begin{eqnarray}
|
|---|
| 1036 | \epsilon_{\rm min} &=&
|
|---|
| 1037 | \frac{1}{2}\left(1-\sqrt{\frac{\gamma-1}{\gamma+1}}\right)\;, \nonumber\\
|
|---|
| 1038 | \epsilon_{\rm max} &=&
|
|---|
| 1039 | \frac{1}{2}\left(1+\sqrt{\frac{\gamma-1}{\gamma+1}}\right)
|
|---|
| 1040 | \;.
|
|---|
| 1041 | \end{eqnarray}
|
|---|
| 1042 |
|
|---|
| 1043 | The kinematic of the two photon final state is constructed by the
|
|---|
| 1044 | following steps:
|
|---|
| 1045 | \begin{enumerate}
|
|---|
| 1046 | \item $\epsilon$ is sampled from $f(\epsilon)$
|
|---|
| 1047 | \item calculate the differential cross section, depending on the
|
|---|
| 1048 | initial polarizations $\bvec{\zeta}^{(1)}$ and $\bvec{\zeta}^{(2)}$.
|
|---|
| 1049 | \item $\epsilon$ is accepted with the probability defined by the ratio
|
|---|
| 1050 | of the differential cross section over the approximation
|
|---|
| 1051 | function $f(\epsilon)$.
|
|---|
| 1052 | \item The $\varphi$ is diced uniformly.
|
|---|
| 1053 | \item $\varphi$ is determined from the differential cross section,
|
|---|
| 1054 | depending on the initial polarizations $\bvec{\zeta}^{(1)}$ and $\bvec{\zeta}^{(2)}$.
|
|---|
| 1055 | \end{enumerate}
|
|---|
| 1056 | A short overview over the sampling method is given in Chapter 2.
|
|---|
| 1057 | In figure \ref{pol.annihi2} the asymmetries indicate the influence of
|
|---|
| 1058 | polarization for an 10MeV incoming positron. The actual behavior is
|
|---|
| 1059 | very sensitive to the energy of the incoming positron.
|
|---|
| 1060 |
|
|---|
| 1061 |
|
|---|
| 1062 | \begin{figure}[ht]
|
|---|
| 1063 | \includegraphics[scale=0.5]{electromagnetic/standard/plots/AnnihAsym.eps}
|
|---|
| 1064 | \caption{\label{pol.annihi2}Annihilation differential cross section
|
|---|
| 1065 | asymmetries in\%.
|
|---|
| 1066 | Red line corrsponds to $A_{ZZ}(\epsilon)$, green line -- $A_{XX}(\epsilon)$,
|
|---|
| 1067 | blue line -- $A_{YY}(\epsilon)$, lightblue line -- $A_{ZX}(\epsilon)$).
|
|---|
| 1068 | Kinetic energy of the incoming positron $T_{k_1} = 10 {\rm MeV}$.}
|
|---|
| 1069 | \end{figure}
|
|---|
| 1070 |
|
|---|
| 1071 | \subsubsection{Polarization transfer}
|
|---|
| 1072 |
|
|---|
| 1073 | After the kinematics is fixed the polarization of the
|
|---|
| 1074 | outgoing photon is determined. Using the dependence of
|
|---|
| 1075 | the differential cross section on the final state polarizations a mean
|
|---|
| 1076 | polarization is calculated for each photon according to method
|
|---|
| 1077 | described in section \ref{sec:pol.intro}.
|
|---|
| 1078 |
|
|---|
| 1079 | The resulting polarization transfer functions $\xi^{(1,2)}(\epsilon)$
|
|---|
| 1080 | are depicted in figure \ref{pol.annihi3}.
|
|---|
| 1081 |
|
|---|
| 1082 | \begin{figure}[ht]
|
|---|
| 1083 | \includegraphics[width=6.5cm]{electromagnetic/standard/plots/AnnihTransfer1.eps}
|
|---|
| 1084 | \includegraphics[width=6.5cm]{electromagnetic/standard/plots/AnnihTransfer2.eps}
|
|---|
| 1085 | \caption{\label{pol.annihi3}
|
|---|
| 1086 | Polarization Transfer in annihilation process.
|
|---|
| 1087 | Blue line corresponds to the circular polarization $\xi_3^{(1)}$ of the photon with energy $m(\gamma + 1)\epsilon$;
|
|---|
| 1088 | red line -- circular polarization $\xi_3^{(2)}$ of the photon photon with energy $m(\gamma + 1)(1-\epsilon)$.}
|
|---|
| 1089 | \end{figure}
|
|---|
| 1090 |
|
|---|
| 1091 | \subsection{Annihilation at Rest}
|
|---|
| 1092 |
|
|---|
| 1093 | The method \verb!AtRestDoIt! treats the special case where a positron
|
|---|
| 1094 | comes to rest before annihilating. It generates two photons, each with
|
|---|
| 1095 | energy $E_{p_{1/2}}=m c^2$ and an isotropic angular distribution.
|
|---|
| 1096 | %Eventhough the asymmetry for annihilation at rest is 100\% (cf.\
|
|---|
| 1097 | %figure \ref{pol.annihi1}), there are always unpolarized electrons in
|
|---|
| 1098 | %the a material.
|
|---|
| 1099 | Starting with the differential cross section for annihilation with
|
|---|
| 1100 | positron and electron spins opposed and parallel,
|
|---|
| 1101 | respectively,\cite{polAnnihi:Page:1957}
|
|---|
| 1102 | \begin{eqnarray}
|
|---|
| 1103 | d\sigma_1 &=& \sim \frac{(1 - \beta^2) + \beta^2 (1 - \beta^2) (1 -
|
|---|
| 1104 | \cos^2\theta)^2}{(1 - \beta^2\cos^2\theta)^2} d \cos\theta \\
|
|---|
| 1105 | d\sigma_2 &=& \sim \frac{\beta^2(1 -
|
|---|
| 1106 | \cos^4\theta)}{(1 - \beta^2\cos^2\theta)^2} d \cos\theta \\
|
|---|
| 1107 | \end{eqnarray}
|
|---|
| 1108 | In the limit $\beta\to0$ the cross section $d\sigma_1$ becomes one,
|
|---|
| 1109 | and the cross section $d\sigma_2$ vanishes. For the opposed spin
|
|---|
| 1110 | state, the total angular
|
|---|
| 1111 | momentum is zero and we have a uniform photon distribution. For the
|
|---|
| 1112 | parallel case the total angular momentum is 1. Here the two photon
|
|---|
| 1113 | final state is forbidden by angular momentum conservation, and it can
|
|---|
| 1114 | be assumed that higher order processes (e.g.\ three photon final
|
|---|
| 1115 | state) play a dominant role. However, in reality 100\% polarized
|
|---|
| 1116 | electron targets do not exist, consequently there are always electrons
|
|---|
| 1117 | with opposite spin, where the positron can annihilate with.
|
|---|
| 1118 | % Leading again to a uniform distribution.
|
|---|
| 1119 | Final state polarization does not play a role for the decay products
|
|---|
| 1120 | of a spin zero state, and can be safely neglected. (Is set to zero)
|
|---|
| 1121 |
|
|---|
| 1122 | \subsection{Status of this document}
|
|---|
| 1123 | 20.11.06 created by P.Starovoitov\\
|
|---|
| 1124 | 21.02.07 minor update by A.Sch{\"a}licke\\
|
|---|
| 1125 |
|
|---|
| 1126 | \begin{latexonly}
|
|---|
| 1127 |
|
|---|
| 1128 | \begin{thebibliography}{9}
|
|---|
| 1129 | \bibitem{polAnnihi:Star:2006} P.~Starovoitov {\em et.al.}, in preparation.
|
|---|
| 1130 | \bibitem{polAnnihi:Page:1957}
|
|---|
| 1131 | L.~A.~Page,
|
|---|
| 1132 | %Polarization Effects in the Two-Quantum Annihilation of Positrons
|
|---|
| 1133 | Phys.~Rev.\ {\bf 106} (1957) 394-398.
|
|---|
| 1134 | \end{thebibliography}
|
|---|
| 1135 |
|
|---|
| 1136 | \end{latexonly}
|
|---|
| 1137 |
|
|---|
| 1138 | \begin{htmlonly}
|
|---|
| 1139 |
|
|---|
| 1140 | \subsection{Bibliography}
|
|---|
| 1141 | \begin{enumerate}
|
|---|
| 1142 | \item P.~Starovoitov {\em et.al.}, in preparation.
|
|---|
| 1143 | \item L.~A.~Page,
|
|---|
| 1144 | %Polarization Effects in the Two-Quantum Annihilation of Positrons
|
|---|
| 1145 | Phys.~Rev.\ {\bf 106} (1957) 394-398.
|
|---|
| 1146 | \end{enumerate}
|
|---|
| 1147 |
|
|---|
| 1148 | \end{htmlonly}
|
|---|
| 1149 |
|
|---|
| 1150 | % ======================================================================
|
|---|
| 1151 | \clearpage
|
|---|
| 1152 | \section{Polarized Compton scattering}
|
|---|
| 1153 | \subsection{Method}
|
|---|
| 1154 | The class {\em G4PolarizedCompton} simulates
|
|---|
| 1155 | Compton scattering of polarized photons with (possibly polarized)
|
|---|
| 1156 | electrons in a material. The implementation follows the approach
|
|---|
| 1157 | described for the class {\em G4ComptonScattering} introduced
|
|---|
| 1158 | in section \ref{sec:em.compton}.
|
|---|
| 1159 | Here the explicit production of a Compton scattered photon and the
|
|---|
| 1160 | ejected electron is considered taking the effects of polarization on
|
|---|
| 1161 | total cross section and mean free path as well as on the distribution
|
|---|
| 1162 | of final state particles into account. Further the average
|
|---|
| 1163 | polarizations of the scattered photon and electron are calculated.
|
|---|
| 1164 | The material electrons are assumed to be free and at rest.
|
|---|
| 1165 |
|
|---|
| 1166 | \subsection{Total cross section and mean free path}
|
|---|
| 1167 |
|
|---|
| 1168 | Kinematics of the Compton process is fixed by the initial energy
|
|---|
| 1169 | \begin{equation}
|
|---|
| 1170 | X=\frac{E_{k_1}}{mc^2}
|
|---|
| 1171 | \end{equation}
|
|---|
| 1172 | and the variable
|
|---|
| 1173 | \begin{equation}
|
|---|
| 1174 | \epsilon = \frac{E_{p_1}}{E_{k_1}},
|
|---|
| 1175 | \end{equation}
|
|---|
| 1176 | which is the part of total energy avaible in initial state carried out
|
|---|
| 1177 | by scattered photon, and the scattering angle
|
|---|
| 1178 | \begin{equation}
|
|---|
| 1179 | \cos{\theta} = 1 - \frac{1}{X}\left(\frac{1}{\epsilon} - 1\right)
|
|---|
| 1180 | \end{equation}
|
|---|
| 1181 | The variable $\epsilon$ has the following limits:
|
|---|
| 1182 | \begin{equation}
|
|---|
| 1183 | \frac{1}{1+2X} \;<\; \epsilon \;<\;1
|
|---|
| 1184 | \end{equation}
|
|---|
| 1185 |
|
|---|
| 1186 |
|
|---|
| 1187 | % ----------------------------------------------------------------------
|
|---|
| 1188 | \subsubsection{Total Cross Section}
|
|---|
| 1189 | The total cross section of Compton scattering reads
|
|---|
| 1190 | \begin{equation}
|
|---|
| 1191 | \sigma^{C}_{pol}=
|
|---|
| 1192 | %\frac{\pi \,{{r_e}}^2}{4\,X^2\,{\left( 1 + 2\,X \right) }^2}
|
|---|
| 1193 | \frac{\pi \,{{r_e}}^2}{X^2\,{\left( 1 + 2\,X \right) }^2}
|
|---|
| 1194 | \left[\sigma^{C}_0 + \zeta^{(1)}_3\zeta^{(2)}_3 \sigma^{C}_L\right]
|
|---|
| 1195 | \end{equation}
|
|---|
| 1196 | where
|
|---|
| 1197 | \begin{equation}
|
|---|
| 1198 | \sigma^{C}_0 = \frac{2\,X\,\left( 2 + X\,\left( 1 + X \right) \,\left( 8 + X \right) \right) -
|
|---|
| 1199 | {\left( 1 + 2\,X \right) }^2\,\left( 2 + \left( 2 - X \right) \,X \right) \,
|
|---|
| 1200 | \ln (1 + 2\,X)}{X}
|
|---|
| 1201 | \end{equation}
|
|---|
| 1202 | and
|
|---|
| 1203 | \begin{equation}
|
|---|
| 1204 | \sigma^{C}_L = 2\,X\,\left( 1 + X\,\left( 4 + 5\,X \right) \right) -
|
|---|
| 1205 | \left( 1 + X \right) \,{\left( 1 + 2\,X \right) }^2\,\ln (1 + 2\,X)
|
|---|
| 1206 | \end{equation}
|
|---|
| 1207 |
|
|---|
| 1208 | \begin{figure}[ht]
|
|---|
| 1209 | \includegraphics[width=6.5cm]{electromagnetic/standard/plots/ComptonTA1.eps}
|
|---|
| 1210 | \includegraphics[width=6.5cm]{electromagnetic/standard/plots/ComptonTA2.eps}
|
|---|
| 1211 | \caption{\label{pol.compton1}Compton total cross section asymmetry depending on the energy of incoming photon.
|
|---|
| 1212 | Left part, between $0$ and $\sim 1$ MeV, right part -- up to 10MeV. }
|
|---|
| 1213 | \end{figure}
|
|---|
| 1214 |
|
|---|
| 1215 |
|
|---|
| 1216 | \subsubsection{Mean free path}
|
|---|
| 1217 | When simulating the Compton scattering of a photon with an atomic
|
|---|
| 1218 | electron, an empirical cross section formula is used, which reproduces
|
|---|
| 1219 | the cross section data down to 10 keV (see section
|
|---|
| 1220 | \ref{sec:em.compton}). If both, beam and target, are polarized this
|
|---|
| 1221 | mean free path has to be corrected.
|
|---|
| 1222 |
|
|---|
| 1223 | In the class {\em G4ComptonScattering} the polarized mean free path
|
|---|
| 1224 | $\lambda^{\rm pol}$ is defined on the basis of the the unpolarized
|
|---|
| 1225 | mean free path $\lambda^{\rm unpol}$ via
|
|---|
| 1226 | \begin{equation}
|
|---|
| 1227 | \lambda^{\rm pol} = \frac{\lambda^{\rm unpol}}{1 +
|
|---|
| 1228 | \zeta_3^{(1)}\zeta_3^{(2)}\, A^C_L }
|
|---|
| 1229 | \end{equation}
|
|---|
| 1230 | where
|
|---|
| 1231 | \begin{equation}
|
|---|
| 1232 | A^C_L = \displaystyle \frac{\sigma^A_L}{\sigma^A_0}
|
|---|
| 1233 | \end{equation}
|
|---|
| 1234 | is the expected asymmetry from the the total polarized Compton
|
|---|
| 1235 | cross section given above.
|
|---|
| 1236 | This asymmetry is depicted in figure \ref{pol.compton1}.
|
|---|
| 1237 |
|
|---|
| 1238 |
|
|---|
| 1239 | % ----------------------------------------------------------------------
|
|---|
| 1240 | \subsection{Sampling the final state}
|
|---|
| 1241 | \subsubsection{Differential Compton Cross Section}
|
|---|
| 1242 |
|
|---|
| 1243 | In the ultra-relativistic approximation the dependence of the
|
|---|
| 1244 | differential cross section on the longitudinal/circular degree of
|
|---|
| 1245 | polarization is very simple. It reads
|
|---|
| 1246 | \begin{eqnarray}
|
|---|
| 1247 | &&\frac{d\sigma_{URA}^C}{de d\varphi}=
|
|---|
| 1248 | %\frac{{{r_e}}^2 \,Z}{ 4X}
|
|---|
| 1249 | \frac{{{r_e}}^2 }{ X}
|
|---|
| 1250 | \Bigg(
|
|---|
| 1251 | \frac{\epsilon^2 + 1}{2\,\epsilon} +
|
|---|
| 1252 | \frac{ \epsilon^2 -1 }{2\,\epsilon} \left(\zeta_3^{(1)}\zeta_3^{(2)} +
|
|---|
| 1253 | \zeta _{3}^{(2)}\,\xi _{3}^{(1)} - \zeta _{3}^{(1)}\,\xi _{3}^{(2)}\right)
|
|---|
| 1254 | \nonumber\\
|
|---|
| 1255 | &&+\frac{\epsilon^2 + 1}{2\,\epsilon} \left( \zeta _{3}^{(1)}\,\xi _{3}^{(1)} - \zeta _{3}^{(2)} \,\xi _{3}^{(2)} \right)
|
|---|
| 1256 | \Bigg)
|
|---|
| 1257 | \end{eqnarray}
|
|---|
| 1258 | where
|
|---|
| 1259 | \begin{tabular}[t]{l@{\ = \ }l}
|
|---|
| 1260 | $r_e$ & classical electron radius \\
|
|---|
| 1261 | $X$ & $E_{k_1}/m_e c^2$ \\
|
|---|
| 1262 | $E_{k_1}$ & energy of the incident photon \\
|
|---|
| 1263 | $m_e c^2$ & electron mass \\
|
|---|
| 1264 | \end{tabular}
|
|---|
| 1265 |
|
|---|
| 1266 | The fully polarized differential cross section is available in the class {\em
|
|---|
| 1267 | G4PolarizedComptonCrossSection}. It takes all mass effects into
|
|---|
| 1268 | account, but binding effects are neglected \cite{polCompt:Star:2006,polCompt:Lipps:1954}.
|
|---|
| 1269 | The cross section dependence on $\epsilon$ for right handed circularly polarized
|
|---|
| 1270 | photons and longitudinally polarized electrons is plotted in figure \ref{pol.compton2a}
|
|---|
| 1271 | %
|
|---|
| 1272 | \begin{figure}
|
|---|
| 1273 | \includegraphics[scale=0.5]{electromagnetic/standard/plots/ComptonXS.eps}
|
|---|
| 1274 | \caption{\label{pol.compton2a}
|
|---|
| 1275 | Compton scattering differential cross section in arbitrary
|
|---|
| 1276 | units. Black line corresponds to the unpolarized cross section;
|
|---|
| 1277 | red line -- to the antiparallel spins of initial particles, and blue line -- to the parallel spins.
|
|---|
| 1278 | Energy of the incoming photon $E_{k_1} = 10 {\rm MeV}$.
|
|---|
| 1279 | }
|
|---|
| 1280 | \end{figure}
|
|---|
| 1281 | %
|
|---|
| 1282 | \begin{figure}
|
|---|
| 1283 | \includegraphics[scale=0.5]{electromagnetic/standard/plots/ComptonAsym.eps}
|
|---|
| 1284 | \caption{\label{pol.compton2}Compton scattering differential cross section asymmetries in\%.
|
|---|
| 1285 | Red line corresponds to the asymmetry due to circular photon and longitudinal electron initial state polarization,
|
|---|
| 1286 | green line -- due to circular photon and transverse electron initial state polarization,
|
|---|
| 1287 | blue line -- due to linear photon and transverse electron initial state polarization.}
|
|---|
| 1288 | \end{figure}
|
|---|
| 1289 |
|
|---|
| 1290 |
|
|---|
| 1291 | \subsubsection{Sampling}
|
|---|
| 1292 |
|
|---|
| 1293 | The photon energy is sampled according to methods discussed in Chapter
|
|---|
| 1294 | 2. The differential cross section can be approximated by a simple
|
|---|
| 1295 | function $\Phi(\epsilon)$:
|
|---|
| 1296 | \begin{equation}
|
|---|
| 1297 | \Phi(\epsilon) = \frac{1}{\epsilon} + \epsilon
|
|---|
| 1298 | \end{equation}
|
|---|
| 1299 | with the kinematic limits given by
|
|---|
| 1300 | \begin{eqnarray}
|
|---|
| 1301 | \epsilon_{\rm min} &=& \frac{1}{1+2X} \\
|
|---|
| 1302 | \epsilon_{\rm max} &=& 1
|
|---|
| 1303 | \end{eqnarray}
|
|---|
| 1304 |
|
|---|
| 1305 |
|
|---|
| 1306 |
|
|---|
| 1307 |
|
|---|
| 1308 | The kinematic of the scattered photon is constructed by the
|
|---|
| 1309 | following steps:
|
|---|
| 1310 | \begin{enumerate}
|
|---|
| 1311 | \item $\epsilon$ is sampled from $\Phi(\epsilon)$
|
|---|
| 1312 | \item calculate the differential cross section, depending on the
|
|---|
| 1313 | initial polarizations $\bvec{\zeta}^{(1)}$ and $\bvec{\zeta}^{(2)}$, which
|
|---|
| 1314 | the correct normalization.
|
|---|
| 1315 | \item $\epsilon$ is accepted with the probability defined by ratio
|
|---|
| 1316 | of the differential cross section over the approximation
|
|---|
| 1317 | function.
|
|---|
| 1318 | \item The $\varphi$ is diced uniformly.
|
|---|
| 1319 | \item $\varphi$ is determined from the differential cross section,
|
|---|
| 1320 | depending on the initial polarizations $\bvec{\zeta}^{(1)}$ and $\bvec{\zeta}^{(2)}$.
|
|---|
| 1321 | \end{enumerate}
|
|---|
| 1322 | In figure \ref{pol.compton2} the asymmetries indicate the influence of
|
|---|
| 1323 | polarization for an 10MeV incoming positron. The actual behavior is
|
|---|
| 1324 | very sensitive to energy of the incoming positron.
|
|---|
| 1325 |
|
|---|
| 1326 | \subsubsection{Polarization transfer}
|
|---|
| 1327 |
|
|---|
| 1328 | After the kinematics is fixed the polarization of the
|
|---|
| 1329 | outgoing photon is determined. Using the dependence of
|
|---|
| 1330 | the differential cross section on the final state polarizations a mean
|
|---|
| 1331 | polarization is calculated for each photon according to the method
|
|---|
| 1332 | described in section \ref{sec:pol.intro}.
|
|---|
| 1333 |
|
|---|
| 1334 | The resulting polarization transfer functions $\xi^{(1,2)}(\epsilon)$
|
|---|
| 1335 | are depicted in figure \ref{pol.compton3}.
|
|---|
| 1336 |
|
|---|
| 1337 | \begin{figure}[ht]
|
|---|
| 1338 | \includegraphics[width=6.5cm]{electromagnetic/standard/plots/ComptonTransfer1.eps}
|
|---|
| 1339 | \includegraphics[width=6.5cm]{electromagnetic/standard/plots/ComptonTransfer2.eps}
|
|---|
| 1340 | \caption{\label{pol.compton3} Polarization Transfer in Compton scattering.
|
|---|
| 1341 | Blue line corresponds to the longitudinal polarization $\xi_3^{(2)}$ of the electron,
|
|---|
| 1342 | red line -- circular polarization $\xi_3^{(1)}$ of the photon.}
|
|---|
| 1343 | \end{figure}
|
|---|
| 1344 |
|
|---|
| 1345 | \subsection{Status of this document}
|
|---|
| 1346 | 20.11.06 created by P.Starovoitov\\
|
|---|
| 1347 | 21.02.07 corrected cross section and some minor update by A.Sch{\"a}licke\\
|
|---|
| 1348 |
|
|---|
| 1349 | \begin{latexonly}
|
|---|
| 1350 |
|
|---|
| 1351 | \begin{thebibliography}{9}
|
|---|
| 1352 | \bibitem{polCompt:Star:2006} P.~Starovoitov {\em et.al.}, in preparation.
|
|---|
| 1353 | %\bibitem{polCompt:Stokes:1852}
|
|---|
| 1354 | %G.~Stokes, Trans.\ Cambridge Phil.\ Soc.\ {\bf 9} (1852) 399.
|
|---|
| 1355 | %
|
|---|
| 1356 | %\bibitem{polCompt:McMaster:1961}
|
|---|
| 1357 | %W.~H.~McMaster, Rev.\ Mod.\ Phys.\ {\bf 33} (1961) 8; and references therein.
|
|---|
| 1358 | \bibitem{polCompt:Lipps:1954}
|
|---|
| 1359 | F.W.~Lipps, H.A.~Tolhoek,
|
|---|
| 1360 | %Polarization Phenomena of Electrons and Photons I,
|
|---|
| 1361 | Physica {\bf 20} (1954) 85;
|
|---|
| 1362 | F.W.~Lipps, H.A.~Tolhoek,
|
|---|
| 1363 | %Polarization Phenomena of Electrons and Photons II,
|
|---|
| 1364 | Physica {\bf 20} (1954) 395.
|
|---|
| 1365 |
|
|---|
| 1366 | \end{thebibliography}
|
|---|
| 1367 |
|
|---|
| 1368 | \end{latexonly}
|
|---|
| 1369 |
|
|---|
| 1370 | \begin{htmlonly}
|
|---|
| 1371 |
|
|---|
| 1372 | \subsection{Bibliography}
|
|---|
| 1373 | \begin{enumerate}
|
|---|
| 1374 | \item P.~Starovoitov {\em et.al.}, in preparation.
|
|---|
| 1375 | \item
|
|---|
| 1376 | F.W.~Lipps, H.A.~Tolhoek,
|
|---|
| 1377 | %Polarization Phenomena of Electrons and Photons I,
|
|---|
| 1378 | Physica {\bf 20} (1954) 85;
|
|---|
| 1379 | F.W.~Lipps, H.A.~Tolhoek,
|
|---|
| 1380 | %Polarization Phenomena of Electrons and Photons II,
|
|---|
| 1381 | Physica {\bf 20} (1954) 395.
|
|---|
| 1382 | \end{enumerate}
|
|---|
| 1383 |
|
|---|
| 1384 | \end{htmlonly}
|
|---|
| 1385 |
|
|---|
| 1386 |
|
|---|
| 1387 | \newpage
|
|---|
| 1388 | \section{Polarized Bremsstrahlung for electron and positron}\label{sec:pol.bremsstrahlung}
|
|---|
| 1389 | \subsection{Method}
|
|---|
| 1390 |
|
|---|
| 1391 | The polarized version of Bremsstrahlung is based on the unpolarized
|
|---|
| 1392 | cross section. Energy loss, mean free path, and distribution of
|
|---|
| 1393 | explicitly generated final state particles are treated by the
|
|---|
| 1394 | unpolarized version {\em G4eBremsstrahlung}. For details consult
|
|---|
| 1395 | section \ref{sec:em.ebrem}.
|
|---|
| 1396 |
|
|---|
| 1397 | The remaining task is to attribute polarization vectors to the
|
|---|
| 1398 | generated final state particles, which is discussed in the following.
|
|---|
| 1399 |
|
|---|
| 1400 | \subsection{Polarization in gamma conversion and brems\-strahlung}
|
|---|
| 1401 |
|
|---|
| 1402 | Gamma conversion and bremsstrahlung are cross-symmetric processes
|
|---|
| 1403 | (i.e. the Feynman diagram for electron bremsstrahlung can be obtained
|
|---|
| 1404 | from the gamma conversion diagram by flipping the incoming photon and
|
|---|
| 1405 | outgoing positron lines) and their cross sections closely related. For
|
|---|
| 1406 | both processes, the interaction occurs in the field of the nucleus and
|
|---|
| 1407 | the total and differential cross section are polarization
|
|---|
| 1408 | independent. Therefore, only the polarization transfer from the
|
|---|
| 1409 | polarized incoming particle to the outgoing particles is taken into
|
|---|
| 1410 | account.
|
|---|
| 1411 | %
|
|---|
| 1412 | \begin{figure}[htb]
|
|---|
| 1413 | \begin{center}
|
|---|
| 1414 | \includegraphics [scale=.33] {electromagnetic/standard/plots/Fyn_diag.eps}
|
|---|
| 1415 | \caption {Feynman diagrams of Gamma conversion and bremsstrahlung processes.}
|
|---|
| 1416 | \end{center}
|
|---|
| 1417 | \end{figure}
|
|---|
| 1418 |
|
|---|
| 1419 |
|
|---|
| 1420 | \noindent
|
|---|
| 1421 | For both processes, the scattering can be formulated by:
|
|---|
| 1422 | \begin{equation}
|
|---|
| 1423 | \mathcal{K}_{1}(k_{1},\bvec{\zeta}^{(1)}) + \mathcal{N}_{1}(k_{\mathcal
|
|---|
| 1424 | {N}_{1}}, \bvec{\zeta}^{(\mathcal {N}_{1})})
|
|---|
| 1425 | \longrightarrow
|
|---|
| 1426 | \mathcal{P}_{1}(p_{1},\bvec{\xi}^{(1)}) + \mathcal{P}_{2}(p_{2},\bvec{\xi}^{(2)}) + \mathcal{N}_{2}(p_{\mathcal{N}_{2}}, \bvec{\xi}^{(\mathcal{N}_{2})})
|
|---|
| 1427 | \end{equation}
|
|---|
| 1428 | %
|
|---|
| 1429 | Where $\mathcal{N}_{1}(k_{\mathcal {N}_{1}}, \bvec{\zeta}^{(\mathcal
|
|---|
| 1430 | {N}_{1})})$ and $\mathcal{N}_{2}(p_{\mathcal{N}_{2}},
|
|---|
| 1431 | \bvec{\xi}^{(\mathcal{N}_{2})})$ are the initial and final state of the
|
|---|
| 1432 | field of the nucleus respectively assumed to be unchanged, at rest and
|
|---|
| 1433 | unpolarized. This leads to $k_{\mathcal {N}_{1}} = k_{\mathcal
|
|---|
| 1434 | {N}_{2}} = 0$ and $\bvec{\zeta}^{(\mathcal {N}_{1})} =
|
|---|
| 1435 | \bvec{\xi}^{(\mathcal{N}_{2})} = 0$
|
|---|
| 1436 |
|
|---|
| 1437 | % Gamma conversion process
|
|---|
| 1438 | \textbf{In the case of gamma conversion process}:\\
|
|---|
| 1439 | $\mathcal{K}_{1}(k_{1},\bvec{\zeta}^{(1)})$ is the incoming photon initial
|
|---|
| 1440 | state with momentum $k_{1}$ and polarization state $\bvec{\zeta}^{(1)}$. \\
|
|---|
| 1441 | $\mathcal{P}_{1}(p_{1},\bvec{\xi}^{(1)})$ and
|
|---|
| 1442 | $\mathcal{P}_{2}(p_{2},\bvec{\xi}^{(2)})$ are the two photons final states with
|
|---|
| 1443 | momenta $p_{1}$ and $p_{2}$ and polarization states $\bvec{\xi}^{(1)}$ and $\bvec{\xi}^{(2)}$.
|
|---|
| 1444 |
|
|---|
| 1445 | % Bremsstrahlung process
|
|---|
| 1446 | \textbf{In the case of bremsstrahlung process}:\\
|
|---|
| 1447 | $\mathcal{K}_{1}(k_{1},\bvec{\zeta}^{(1)})$ is the incoming lepton
|
|---|
| 1448 | $e^{-}(e^{+})$ initial state with momentum $k_{1}$ and polarization
|
|---|
| 1449 | state $\bvec{\zeta}^{(1)}$. \\
|
|---|
| 1450 | $\mathcal{P}_{1}(p_{1},\bvec{\xi}^{(1)})$ is the lepton $e^{-}(e^{+})$ final
|
|---|
| 1451 | state with momentum $p_{1}$ and polarization state $\bvec{\xi}^{(1)}$. \\
|
|---|
| 1452 | $\mathcal{P}_{2}(p_{2},\bvec{\xi}^{(2)})$ is the bremsstrahlung photon in
|
|---|
| 1453 | final state with momentum $p_{2}$ and polarization state $\bvec{\xi}^{(2)}$.
|
|---|
| 1454 |
|
|---|
| 1455 | \subsection[Polarization transfer to the photon]{Polarization transfer from the lepton $e^{-}(e^{+})$ to a photon}
|
|---|
| 1456 | The polarization transfer from an electron (positron) to a photon in a
|
|---|
| 1457 | brems\-strahlung process was first calculated by Olsen and Maximon
|
|---|
| 1458 | \cite{polBrems:Olsen_Maximon} taking into account both Coulomb and screening
|
|---|
| 1459 | effects. In the Stokes vector formalism, the $e^{-}(e^{+})$
|
|---|
| 1460 | polarization state can be transformed to a photon polarization finale
|
|---|
| 1461 | state by means of interaction matrix $T_{\gamma}^{b}$. It defined via
|
|---|
| 1462 | %
|
|---|
| 1463 | \begin{equation}
|
|---|
| 1464 | \left(\begin{array}{c}
|
|---|
| 1465 | O \\
|
|---|
| 1466 | \bvec{\xi}^{(2)}
|
|---|
| 1467 | \end{array}\right)
|
|---|
| 1468 | = T_{\gamma}^{b} \,
|
|---|
| 1469 | \left(\begin{array}{c}
|
|---|
| 1470 | 1 \\
|
|---|
| 1471 | \bvec{\zeta}^{(1)}
|
|---|
| 1472 | \end{array}\right)\;,
|
|---|
| 1473 | \label{eq:brem_gamma}
|
|---|
| 1474 | \end{equation}
|
|---|
| 1475 | %
|
|---|
| 1476 | and
|
|---|
| 1477 | %
|
|---|
| 1478 | \begin{equation}
|
|---|
| 1479 | T_{\gamma}^{b}\approx
|
|---|
| 1480 | \left(
|
|---|
| 1481 | \begin{array}{cccc}
|
|---|
| 1482 | 1 & 0 & 0 & 0 \\
|
|---|
| 1483 | D & 0 & 0 & 0 \\
|
|---|
| 1484 | 0 & 0 & 0 & 0 \\
|
|---|
| 1485 | 0 & T & 0 & L \\
|
|---|
| 1486 | \end{array}
|
|---|
| 1487 | \right)\;,
|
|---|
| 1488 | \label{eq:matrix_brem_g}
|
|---|
| 1489 | \end{equation}
|
|---|
| 1490 | %
|
|---|
| 1491 | where
|
|---|
| 1492 | \begin{eqnarray}
|
|---|
| 1493 | I &=& (\epsilon_{1}^{2}+\epsilon_{2}^{2})(3+2\Gamma)-2\epsilon_{1}\epsilon_{2}(1+4u^{2}\hat\xi^{2}\Gamma)\\
|
|---|
| 1494 | D &=& \left\lbrace 8\epsilon_{1}\epsilon_{2}u^{2}\hat\xi^{2}\Gamma \right\rbrace / I\\
|
|---|
| 1495 | T &=& \left\lbrace -4k\epsilon_{2}\hat\xi(1-2\hat\xi)u \Gamma \right\rbrace / I \\
|
|---|
| 1496 | L &=&
|
|---|
| 1497 | k\lbrace(\epsilon_{1}^{2}+\epsilon_{2}^{2})(3+2\Gamma)-2\epsilon_{2}(1+4u^{2}\hat\xi^{2}\Gamma)\rbrace
|
|---|
| 1498 | / I
|
|---|
| 1499 | \end{eqnarray}
|
|---|
| 1500 | %
|
|---|
| 1501 | and
|
|---|
| 1502 | %
|
|---|
| 1503 | \begin{center}
|
|---|
| 1504 | \begin{tabular}{ll}
|
|---|
| 1505 | $\epsilon_{1}$ & Total energy of the incoming lepton $e^{+}(e^{-})$ in units $mc^{2}$\\
|
|---|
| 1506 | $\epsilon_{2}$ & Total energy of the outgoing lepton $e^{+}(e^{-})$ in units $mc^{2}$\\
|
|---|
| 1507 | $k$ &$=(\epsilon_{1}-\epsilon_{2})$, the energy of the bremsstrahlung photon in units of $mc^{2}$
|
|---|
| 1508 | \\
|
|---|
| 1509 | $\bvec{p}$ & Electron (positron) initial momentum in units $mc$\\
|
|---|
| 1510 | $\bvec{k}$ & Bremsstrahlung photon momentum in units $mc$\\
|
|---|
| 1511 | $\bvec{u}$ & Component of $\bvec{p}$
|
|---|
| 1512 | perpendicular to $\bvec{k}$ in units $mc$ and $u=\vert \bvec{u} \vert $\\
|
|---|
| 1513 | $\hat\xi$ & $ = 1/(1+u^{2})$
|
|---|
| 1514 | \end{tabular}
|
|---|
| 1515 | \end{center}
|
|---|
| 1516 | %
|
|---|
| 1517 | Coulomb and screening effects are contained in \(\Gamma\), defined as
|
|---|
| 1518 | follows
|
|---|
| 1519 | \begin{eqnarray}
|
|---|
| 1520 | \Gamma &=& \ln\left(\frac{1}{\delta}\right)-2-f(Z)+
|
|---|
| 1521 | \mathcal{F}\left(\frac{\hat\xi}{\delta}\right) \quad \mbox{for } \Delta \le 120 \\
|
|---|
| 1522 | \Gamma &=& \ln\left( \frac{111}{\hat\xi Z^{\frac{1}{3}}}\right)-2-f(z)
|
|---|
| 1523 | \quad \mbox{for } \Delta \ge 120
|
|---|
| 1524 | \end{eqnarray}
|
|---|
| 1525 | %
|
|---|
| 1526 | with
|
|---|
| 1527 | %
|
|---|
| 1528 | \begin{eqnarray}
|
|---|
| 1529 | \Delta &=& \frac{12 Z^{\frac{1}{3}}\epsilon_{1}\epsilon_{2} \hat\xi}{121
|
|---|
| 1530 | k} \quad \mbox{with $Z$ the atomic number and } \delta =
|
|---|
| 1531 | \frac{k}{2\epsilon_{1}\epsilon{2}}
|
|---|
| 1532 | \end{eqnarray}
|
|---|
| 1533 | %
|
|---|
| 1534 | %
|
|---|
| 1535 | \noindent
|
|---|
| 1536 | $f(Z)$ is the coulomb correction term derived by Davies, Bethe
|
|---|
| 1537 | and Maximon \cite{polBrems:Davise}.
|
|---|
| 1538 | $ \mathcal{F}({\hat\xi}/{\delta})$ contains the screening effects
|
|---|
| 1539 | and is zero for $\Delta \le 0.5 $ (No screening effects). For $0.5 \le
|
|---|
| 1540 | \Delta \le 120 $ (intermediate screening) it is a slowly decreasing
|
|---|
| 1541 | function. The $\mathcal{F}({\hat\xi}/{\delta})$ values versus
|
|---|
| 1542 | $\Delta$ are given in table \ref{koch} and used with a linear
|
|---|
| 1543 | interpolation in between.
|
|---|
| 1544 |
|
|---|
| 1545 | The polarization vector of the incoming $e^{-}(e^{+})$ must be rotated
|
|---|
| 1546 | into the frame defined by the scattering plane (x-z-plane) and the
|
|---|
| 1547 | direction of the outgoing photon (z-axis). The resulting polarization
|
|---|
| 1548 | vector of the bremsstrahlung photon is also given in this frame.
|
|---|
| 1549 | \begin{table}[h]
|
|---|
| 1550 | \caption{$ \mathcal{F}({\hat\xi}/{\delta})$ for intermediate values of the screening factor \cite{polBrems:koch}.}
|
|---|
| 1551 | \label{koch}
|
|---|
| 1552 | \begin{center}
|
|---|
| 1553 | \begin{tabular}{|cc|cc|}
|
|---|
| 1554 | \hline
|
|---|
| 1555 | $\Delta$ &$ -\mathcal{F}\left({\hat\xi}/{\delta}\right)$ & $\Delta$& $ -\mathcal{F}\left({\hat\xi}/{\delta}\right)$\\
|
|---|
| 1556 | \hline
|
|---|
| 1557 | 0.5 & 0.0145 & 40.0 & 2.00 \\
|
|---|
| 1558 | 1.0 & 0.0490 & 45.0 & 2.114\\
|
|---|
| 1559 | 2.0 & 0.1400 & 50.0 & 2.216\\
|
|---|
| 1560 | 4.0 & 0.3312 & 60.0 & 2.393\\
|
|---|
| 1561 | 8.0 & 0.6758 & 70.0 & 2.545\\
|
|---|
| 1562 | 15.0 & 1.126 & 80.0 & 2.676\\
|
|---|
| 1563 | 20.0 & 1.367 & 90.0 & 2.793\\
|
|---|
| 1564 | 25.0 & 1.564 & 100.0 & 2.897\\
|
|---|
| 1565 | 30.0 & 1.731 & 120.0 & 3.078\\
|
|---|
| 1566 | 35.0 & 1.875 & & \\
|
|---|
| 1567 | \hline
|
|---|
| 1568 | \end{tabular}
|
|---|
| 1569 | \end{center}
|
|---|
| 1570 | \end{table}
|
|---|
| 1571 | %
|
|---|
| 1572 | Using Eq.\ (\ref{eq:brem_gamma}) and the transfer matrix given by
|
|---|
| 1573 | Eq.\ (\ref{eq:matrix_brem_g}) the bremsstrahlung photon polarization
|
|---|
| 1574 | state in the Stokes formalism \cite{polBrems:McMaster1, polBrems:McMaster2} is given by
|
|---|
| 1575 | %
|
|---|
| 1576 | \begin{equation}
|
|---|
| 1577 | \xi^{(2)} = \left(
|
|---|
| 1578 | \begin{array}{c}
|
|---|
| 1579 | \xi_{1}^{(2)}\\
|
|---|
| 1580 | \xi_{2}^{(2)} \\
|
|---|
| 1581 | \xi_{3}^{(2)} \\
|
|---|
| 1582 | \end{array}
|
|---|
| 1583 | \right)
|
|---|
| 1584 | \approx
|
|---|
| 1585 | \left(
|
|---|
| 1586 | \begin{array}{c}
|
|---|
| 1587 | D \\
|
|---|
| 1588 | 0 \\
|
|---|
| 1589 | \zeta_{1}^{(1)}L + \zeta_{2}^{(1)}T \\
|
|---|
| 1590 | \end{array}
|
|---|
| 1591 | \right)
|
|---|
| 1592 | \end{equation}
|
|---|
| 1593 |
|
|---|
| 1594 | \subsection[Polarization transfer to the lepton]{Remaining polarization of the lepton after emitting a bremsstrahlung photon}
|
|---|
| 1595 | The \(e^{-}(e^{+})\) polarization final state after emitting a
|
|---|
| 1596 | bremsstrahlung photon can be calculated using the interaction matrix
|
|---|
| 1597 | \(T_{l}^{b}\) which describes the lepton depolarization. The
|
|---|
| 1598 | polarization vector for the outgoing \(e^{-}(e^{+})\) is not given by
|
|---|
| 1599 | Olsen and Maximon. However, their results can be used to calculate the
|
|---|
| 1600 | following transfer matrix \cite{polBrems:klausFl,polBrems:hoogduin}.
|
|---|
| 1601 | %
|
|---|
| 1602 | \begin{equation}
|
|---|
| 1603 | \left(\begin{array}{c}
|
|---|
| 1604 | O \\
|
|---|
| 1605 | \bvec{\xi}^{(1)}
|
|---|
| 1606 | \end{array}\right)
|
|---|
| 1607 | = T_{l}^{b} \,
|
|---|
| 1608 | \left(\begin{array}{c}
|
|---|
| 1609 | 1 \\
|
|---|
| 1610 | \bvec{\zeta}^{(1)}
|
|---|
| 1611 | \end{array}\right)
|
|---|
| 1612 | \label{eq:brem_lepton}
|
|---|
| 1613 | \end{equation}
|
|---|
| 1614 | %
|
|---|
| 1615 | \begin{equation}
|
|---|
| 1616 | T_{l}^{b}\approx
|
|---|
| 1617 | \left(
|
|---|
| 1618 | \begin{array}{cccc}
|
|---|
| 1619 | 1 & 0 & 0 & 0 \\
|
|---|
| 1620 | D & M & 0 & E \\
|
|---|
| 1621 | 0 & 0 & M & 0 \\
|
|---|
| 1622 | 0 & F & 0 & M+P \\
|
|---|
| 1623 | \end{array}
|
|---|
| 1624 | \right)
|
|---|
| 1625 | \label{eq:matrix_brem_l}
|
|---|
| 1626 | \end{equation}
|
|---|
| 1627 | %
|
|---|
| 1628 | where
|
|---|
| 1629 | %
|
|---|
| 1630 | \begin{eqnarray}
|
|---|
| 1631 | I &=&(\epsilon_{1}^{2}+\epsilon_{2}^{2})(3+2\Gamma)-2\epsilon_{1}\epsilon_{2}(1+4u^{2}\hat\xi^{2}\Gamma)\\
|
|---|
| 1632 | F &=& \epsilon_{2} \left\lbrace 4k\hat\xi u (1-2\hat\xi)\Gamma\right\rbrace /I \\
|
|---|
| 1633 | E &=& \epsilon_{1} \left\lbrace 4k\hat\xi u (2\hat\xi-1)\Gamma \right\rbrace /I\\
|
|---|
| 1634 | M &=& \left\lbrace 4k\epsilon_{1}\epsilon_{2}(1+\Gamma - 2 u^{2}\hat\xi^{2} \Gamma)\right\rbrace / I \\
|
|---|
| 1635 | P &=& \left\lbrace k^{2} (1+8 \Gamma(\hat\xi - 0.5)^{2}\right\rbrace / I
|
|---|
| 1636 | \end{eqnarray}
|
|---|
| 1637 | %
|
|---|
| 1638 | and
|
|---|
| 1639 | %
|
|---|
| 1640 | \begin{center}
|
|---|
| 1641 | \begin{tabular}{ll}
|
|---|
| 1642 | $\epsilon_{1}$ & Total energy of the incoming $e^{+}/e^{-}$ in units $mc^{2}$\\
|
|---|
| 1643 | $\epsilon_{2}$ & Total energy of the outgoing $e^{+}/e^{-}$ in units $mc^{2}$\\
|
|---|
| 1644 | $k$ & $=(\epsilon_{1}-\epsilon_{2})$, energy of the photon in units of $mc^{2}$\\
|
|---|
| 1645 | $\bvec{p}$ & Electron (positron) initial momentum in units $mc$\\
|
|---|
| 1646 | $\bvec{k}$ & Photon momentum in units $mc$\\
|
|---|
| 1647 | $\bvec{u}$ & Component of $\bvec{p}$
|
|---|
| 1648 | perpendicular to $\bvec{k}$ in units $mc$ and $u=\vert \bvec{u} \vert $
|
|---|
| 1649 | \end{tabular}
|
|---|
| 1650 | \end{center}
|
|---|
| 1651 |
|
|---|
| 1652 | Using Eq.\ (\ref{eq:brem_lepton}) and the transfer matrix given by
|
|---|
| 1653 | Eq.\ (\ref{eq:matrix_brem_l}) the \(e^{-}(e^{+})\) polarization state
|
|---|
| 1654 | after emitting a bremsstrahlung photon is given in the Stokes
|
|---|
| 1655 | formalism by
|
|---|
| 1656 | %
|
|---|
| 1657 | \begin{equation}
|
|---|
| 1658 | \xi^{(1)} = \left(
|
|---|
| 1659 | \begin{array}{c}
|
|---|
| 1660 | \xi_{1}^{(1)}\\
|
|---|
| 1661 | \xi_{2}^{(1)} \\
|
|---|
| 1662 | \xi_{3}^{(1)} \\
|
|---|
| 1663 | \end{array}
|
|---|
| 1664 | \right)
|
|---|
| 1665 | \approx
|
|---|
| 1666 | \left(
|
|---|
| 1667 | \begin{array}{c}
|
|---|
| 1668 | \zeta_{1}^{(1)} M + \zeta_{3}^{(1)} E \\
|
|---|
| 1669 | \zeta_{2}^{(1)} M \\
|
|---|
| 1670 | \zeta_{3}^{(1)}(M+P) + \zeta_{1}^{(1)} F \\
|
|---|
| 1671 | \end{array}
|
|---|
| 1672 | \right)
|
|---|
| 1673 | \;.
|
|---|
| 1674 | \end{equation}
|
|---|
| 1675 |
|
|---|
| 1676 | \subsection{Status of this document}
|
|---|
| 1677 | 20.11.06 created by K.Laihem\\
|
|---|
| 1678 | 21.02.07 minor update by A.Sch{\"a}licke\\
|
|---|
| 1679 |
|
|---|
| 1680 | \begin{latexonly}
|
|---|
| 1681 |
|
|---|
| 1682 | \begin{thebibliography}{7}
|
|---|
| 1683 |
|
|---|
| 1684 | \bibitem{polBrems:Olsen_Maximon} H.~Olsen and L.C.~Maximon. Photon and electron polarization in high- energy bremsstrahlung and pair production with screening. Physical Review, 114:887-904, 1959.
|
|---|
| 1685 |
|
|---|
| 1686 | \bibitem{polBrems:McMaster1} W.H.~McMaster. Polarization and the Stokes parameters. American Journal of Physics, 22(6):351-362, 1954.
|
|---|
| 1687 |
|
|---|
| 1688 | \bibitem{polBrems:McMaster2}W.H.~McMaster. Matrix representation of polarization. Reviews of Modern Physics, 33(1):8-29, 1961.
|
|---|
| 1689 |
|
|---|
| 1690 | \bibitem{polBrems:klausFl}K.~Fl{\"o}ttmann. Investigations toward the development of polarized and unpolarized high intensity positron sources for linear colliders. PhD thesis, Universitat Hamburg, 1993.
|
|---|
| 1691 |
|
|---|
| 1692 | \bibitem{polBrems:hoogduin}Hoogduin, Johannes Marinus. Electron, positron and photon polarimetry. PhD thesis, Rijksuniversiteit Groningen 1997.
|
|---|
| 1693 |
|
|---|
| 1694 | \bibitem{polBrems:Davise}H.~Davies, H.A.~Bethe and L.C.~Maximon. Theory of Bremsstrahlung and Pair Production. II. Integral Cross Section for Pair Production. Physical Review, 93(4):788-795, 1954.
|
|---|
| 1695 |
|
|---|
| 1696 | \bibitem{polBrems:koch}H.W.~Koch and J.W.~Motz. Bremsstrahlung cross-section formulas and related data. Review Mod. Phys., 31(4):920-955, 1959.
|
|---|
| 1697 |
|
|---|
| 1698 | \bibitem{polBrems:Laihem:thesis}
|
|---|
| 1699 | K.~Laihem, PhD thesis, Humboldt University Berlin, Germany, (2007).
|
|---|
| 1700 |
|
|---|
| 1701 | \end{thebibliography}
|
|---|
| 1702 | \end{latexonly}
|
|---|
| 1703 |
|
|---|
| 1704 | \begin{htmlonly}
|
|---|
| 1705 | \begin{thebibliography}{9}
|
|---|
| 1706 | \begin{enumerate}
|
|---|
| 1707 |
|
|---|
| 1708 | \item H.~Olsen and L.C.~Maximon. Photon and electron polarization in high- energy bremsstrahlung and pair production with screening. Physical Review, 114:887-904, 1959.
|
|---|
| 1709 |
|
|---|
| 1710 | \item W.H.~McMaster. Polarization and the Stokes parameters. American Journal of Physics, 22(6):351-362, 1954.
|
|---|
| 1711 |
|
|---|
| 1712 | \item W.H.~McMaster. Matrix representation of polarization. Reviews of Modern Physics, 33(1):8-29, 1961.
|
|---|
| 1713 |
|
|---|
| 1714 | \item K.~Fl{\"o}ttmann. Investigations toward the development of polarized and unpolarized high intensity positron sources for linear colliders. PhD thesis, Universitat Hamburg, 1993.
|
|---|
| 1715 |
|
|---|
| 1716 | \item Hoogduin, Johannes Marinus. Electron, positron and photon polarimetry. PhD thesis, Rijksuniversiteit Groningen 1997.
|
|---|
| 1717 |
|
|---|
| 1718 | \item H.~Davies, H.A.~Bethe and L.C.~Maximon. Theory of Bremsstrahlung and Pair Production. II. Integral Cross Section for Pair Production. Physical Review, 93(4):788-795, 1954.
|
|---|
| 1719 |
|
|---|
| 1720 | \item H.W.~Koch and J.W.~Motz. Bremsstrahlung cross-section formulas and related data. Review Mod. Phys., 31(4):920-955, 1959.
|
|---|
| 1721 |
|
|---|
| 1722 | \item K.~Laihem, PhD thesis, Humboldt University Berlin, Germany, (2007).
|
|---|
| 1723 |
|
|---|
| 1724 | \end{enumerate}
|
|---|
| 1725 | \end{htmlonly}
|
|---|
| 1726 |
|
|---|
| 1727 | \newpage
|
|---|
| 1728 | \section{Polarized Gamma conversion into an electron--positron pair}
|
|---|
| 1729 | \subsection{Method}
|
|---|
| 1730 |
|
|---|
| 1731 | The polarized version of gamma conversion is based on the EM standard
|
|---|
| 1732 | process {\em G4GammaConversion}. Mean free path and the distribution
|
|---|
| 1733 | of explicitly generated final state particles are treated by this
|
|---|
| 1734 | version. For details consult
|
|---|
| 1735 | section \ref{sec:em.conv}.
|
|---|
| 1736 |
|
|---|
| 1737 | The remaining task is to attribute polarization vectors to the
|
|---|
| 1738 | generated final state leptons, which is discussed in the following.
|
|---|
| 1739 |
|
|---|
| 1740 |
|
|---|
| 1741 | \subsection[Polarization transfer]{Polarization transfer from the photon to the two leptons}
|
|---|
| 1742 | Gamma conversion process is essentially the inverse process of
|
|---|
| 1743 | Bremsstrahlung and the interaction matrix is obtained by inverting the
|
|---|
| 1744 | rows and columns of the bremsstrahlung matrix and changing the sign of
|
|---|
| 1745 | \(\epsilon_{2}\), cf.\ section \ref{sec:pol.bremsstrahlung}. It
|
|---|
| 1746 | follows from the work by Olsen and Maximon
|
|---|
| 1747 | \cite{polPair:Olsen_Maximon} that the polarization state \(\xi^{(1)}\) of an
|
|---|
| 1748 | electron or positron after pair production is obtained by
|
|---|
| 1749 | %
|
|---|
| 1750 | \begin{equation}
|
|---|
| 1751 | \left(\begin{array}{c}
|
|---|
| 1752 | O \\
|
|---|
| 1753 | \bvec{\xi}^{(1)}
|
|---|
| 1754 | \end{array}\right)
|
|---|
| 1755 | = T_{l}^{p} \,
|
|---|
| 1756 | \left(\begin{array}{c}
|
|---|
| 1757 | 1 \\
|
|---|
| 1758 | \bvec{\zeta}^{(1)}
|
|---|
| 1759 | \end{array}\right)
|
|---|
| 1760 | \label{eq:conv_lepton}
|
|---|
| 1761 | \end{equation}
|
|---|
| 1762 | %
|
|---|
| 1763 | and
|
|---|
| 1764 | %
|
|---|
| 1765 | \begin{equation}
|
|---|
| 1766 | T_{l}^{p}\approx
|
|---|
| 1767 | \left(
|
|---|
| 1768 | \begin{array}{cccc}
|
|---|
| 1769 | 1 & D & 0 & 0 \\
|
|---|
| 1770 | 0 & 0 & 0 & T \\
|
|---|
| 1771 | 0 & 0 & 0 & 0 \\
|
|---|
| 1772 | 0 & 0 & 0 & L \\
|
|---|
| 1773 | \end{array}
|
|---|
| 1774 | \right)
|
|---|
| 1775 | \;,
|
|---|
| 1776 | \label{eq:matrix_conv}
|
|---|
| 1777 | \end{equation}
|
|---|
| 1778 | %
|
|---|
| 1779 | where
|
|---|
| 1780 | \begin{eqnarray}
|
|---|
| 1781 | I &=& (\epsilon_{1}^{2}+\epsilon_{2}^{2})(3+2\Gamma)+2\epsilon_{1}\epsilon_{2}(1+4u^{2}\hat\xi^{2}\Gamma)\\
|
|---|
| 1782 | D &=& \left\lbrace -8\epsilon_{1}\epsilon_{2}u^{2}\hat\xi^{2}\Gamma \right\rbrace / I\\
|
|---|
| 1783 | T &=& \left\lbrace -4k\epsilon_{2}\hat\xi(1-2\hat\xi)u \Gamma \right\rbrace / I \\
|
|---|
| 1784 | L &=&
|
|---|
| 1785 | k\lbrace(\epsilon_{1}^{2}+\epsilon_{2}^{2})(3+2\Gamma)-2\epsilon_{2}(1+4u^{2}\hat\xi^{2}\Gamma)\rbrace/ I
|
|---|
| 1786 | \end{eqnarray}
|
|---|
| 1787 | and
|
|---|
| 1788 | \begin{center}
|
|---|
| 1789 | \begin{tabular}{ll}
|
|---|
| 1790 | $\epsilon_{1}$ & total energy of the first lepton $e^{+}(e^{-})$ in units $mc^{2}$\\
|
|---|
| 1791 | $\epsilon_{2}$ & total energy of the second lepton $e^{-}(e^{+})$ in units $mc^{2}$\\
|
|---|
| 1792 | $k=(\epsilon_{1}+\epsilon_{2})$ & energy of the incoming photon in units of $mc^{2}$\\
|
|---|
| 1793 | $\bvec{p}$ & electron=positron initial momentum in units $mc$\\
|
|---|
| 1794 | $\bvec{k}$ & photon momentum in units $mc$\\
|
|---|
| 1795 | $\bvec{u}$ & electron/positron initial momentum in units $mc$\\
|
|---|
| 1796 | $u$ & $=\vert \bvec{u} \vert $
|
|---|
| 1797 | \end{tabular}
|
|---|
| 1798 | \end{center}
|
|---|
| 1799 | %
|
|---|
| 1800 | %Here, $\epsilon_{1}(\epsilon_{2})$ is the energy of the observed
|
|---|
| 1801 | %electron or positron. The matrix (\ref{eq:matrix_conv}) for pair
|
|---|
| 1802 | %production is the transpose of matrix (\ref{eq:matrix_brem_g}).
|
|---|
| 1803 | Coulomb and screening effects are contained in \(\Gamma\), defined in
|
|---|
| 1804 | section \ref{sec:pol.bremsstrahlung}.
|
|---|
| 1805 |
|
|---|
| 1806 |
|
|---|
| 1807 | Using Eq.\ (\ref{eq:conv_lepton}) and the transfer matrix given by
|
|---|
| 1808 | Eq.\ (\ref{eq:matrix_conv}) the polarization state of
|
|---|
| 1809 | the produced $e^{-}(e^{+})$ is given in the Stokes formalism by:
|
|---|
| 1810 |
|
|---|
| 1811 | \begin{equation}
|
|---|
| 1812 | \xi^{(1)} = \left(
|
|---|
| 1813 | \begin{array}{c}
|
|---|
| 1814 | \xi_{1}^{(1)}\\
|
|---|
| 1815 | \xi_{2}^{(1)} \\
|
|---|
| 1816 | \xi_{3}^{(1)} \\
|
|---|
| 1817 | \end{array}
|
|---|
| 1818 | \right)
|
|---|
| 1819 | \approx
|
|---|
| 1820 | \left(
|
|---|
| 1821 | \begin{array}{c}
|
|---|
| 1822 | \zeta_{3}^{(1)} T \\
|
|---|
| 1823 | 0 \\
|
|---|
| 1824 | \zeta_{3}^{(1)} L \\
|
|---|
| 1825 | \end{array}
|
|---|
| 1826 | \right)
|
|---|
| 1827 | \end{equation}
|
|---|
| 1828 |
|
|---|
| 1829 |
|
|---|
| 1830 | \subsection{Status of this document}
|
|---|
| 1831 | 20.11.06 created by K.Laihem\\
|
|---|
| 1832 | 21.02.07 minor update by A.Sch{\"a}licke\\
|
|---|
| 1833 |
|
|---|
| 1834 | \begin{latexonly}
|
|---|
| 1835 |
|
|---|
| 1836 | \begin{thebibliography}{9}
|
|---|
| 1837 |
|
|---|
| 1838 | \bibitem{polPair:Olsen_Maximon} H.~Olsen and L.C.~Maximon. Photon and electron polarization in high- energy bremsstrahlung and pair production with screening. Physical Review, 114:887-904, 1959.
|
|---|
| 1839 |
|
|---|
| 1840 | \bibitem{polPair:Laihem:thesis}
|
|---|
| 1841 | K.~Laihem, PhD thesis, Humboldt University Berlin, Germany, (2007).
|
|---|
| 1842 |
|
|---|
| 1843 | \end{thebibliography}
|
|---|
| 1844 |
|
|---|
| 1845 | \end{latexonly}
|
|---|
| 1846 |
|
|---|
| 1847 | \begin{htmlonly}
|
|---|
| 1848 | \begin{enumerate}
|
|---|
| 1849 |
|
|---|
| 1850 | \item H.~Olsen and L.C.~Maximon. Photon and electron polarization in high- energy bremsstrahlung and pair production with screening. Physical Review, 114:887-904, 1959.
|
|---|
| 1851 |
|
|---|
| 1852 | \item K.~Laihem, PhD thesis, Humboldt University Berlin, Germany, (2007).
|
|---|
| 1853 |
|
|---|
| 1854 | \end{enumerate}
|
|---|
| 1855 |
|
|---|
| 1856 | \end{htmlonly}
|
|---|
| 1857 |
|
|---|
| 1858 |
|
|---|
| 1859 |
|
|---|
| 1860 | % LocalWords: Bhabha
|
|---|