| 1 | \\
|
|---|
| 2 | $x$ is a kinetic variable of the particle :
|
|---|
| 3 | $ x = \log_{10}(\gamma \beta) = \ln(\gamma^{2} \beta^{2})/4.606 $, \linebreak
|
|---|
| 4 | and $\delta(x)$ is defined by
|
|---|
| 5 | \begin{equation}
|
|---|
| 6 | % \label{muion.de1}
|
|---|
| 7 | \begin{array}{rll}
|
|---|
| 8 | \mbox{for} & x < x_0 : & \delta(x) = 0 \\
|
|---|
| 9 | \mbox{for} & x \in [x_0,\ x_1] : & \delta(x) = 4.606 x - C + a(x_1 - x)^m \\
|
|---|
| 10 | \mbox{for} & x > x_1 : & \delta(x) = 4.606 x - C
|
|---|
| 11 | \end{array}
|
|---|
| 12 | \end{equation}
|
|---|
| 13 | where the matter-dependent constants are calculated as follows:
|
|---|
| 14 | \begin{equation}
|
|---|
| 15 | % \label{muion.de2}
|
|---|
| 16 | \begin{array}{lcl}
|
|---|
| 17 | h\nu_p & = & \mbox{ plasma energy of the medium }
|
|---|
| 18 | = \sqrt{4\pi n_{el} r_e^3} mc^2/\alpha
|
|---|
| 19 | = \sqrt{4\pi n_{el} r_e} \hbar c \\
|
|---|
| 20 | C & = & 1 + 2 \ln (I/h\nu_p) \\
|
|---|
| 21 | x_a & = & C/4.606 \\
|
|---|
| 22 | a & = & 4.606(x_a - x_0)/(x_1 - x_0)^m \\
|
|---|
| 23 | m & = & 3 .
|
|---|
| 24 | \end{array}
|
|---|
| 25 | \end{equation}
|
|---|
| 26 | For condensed media
|
|---|
| 27 | $$
|
|---|
| 28 | \begin{array}{ll}
|
|---|
| 29 | I < 100 \: \mbox{eV} & \left \{
|
|---|
| 30 | \begin{array}{rll}
|
|---|
| 31 | \mbox{for } C \leq 3.681 & x_0 = 0.2 & x_1 = 2 \\
|
|---|
| 32 | \mbox{for } C > 3.681 & x_0 = 0.326 C - 1.0 & x_1 = 2
|
|---|
| 33 | \end{array} \right . \\
|
|---|
| 34 | I \geq 100 \: \mbox{eV} & \left \{
|
|---|
| 35 | \begin{array}{rll}
|
|---|
| 36 | \mbox{for } C \leq 5.215 & x_0 = 0.2 & x_1 = 3 \\
|
|---|
| 37 | \mbox{for } C > 5.215 & x_0 = 0.326 C - 1.5 & x_1 = 3
|
|---|
| 38 | \end{array} \right .
|
|---|
| 39 | \end{array}
|
|---|
| 40 | $$
|
|---|
| 41 | and for gaseous media
|
|---|
| 42 | \[
|
|---|
| 43 | \begin{array}{rlll}
|
|---|
| 44 | \mbox{for} & C < 10. & x_0 = 1.6 & x_1 = 4 \\
|
|---|
| 45 | \mbox{for} & C \in [10.0,\ 10.5[ & x_0 = 1.7 & x_1 = 4 \\
|
|---|
| 46 | \mbox{for} & C \in [10.5,\ 11.0[ & x_0 = 1.8 & x_1 = 4 \\
|
|---|
| 47 | \mbox{for} & C \in [11.0,\ 11.5[ & x_0 = 1.9 & x_1 = 4 \\
|
|---|
| 48 | \mbox{for} & C \in [11.5,\ 12.25[ & x_0 = 2. & x_1 = 4 \\
|
|---|
| 49 | \mbox{for} & C \in [12.25,\ 13.804[ & x_0 = 2. & x_1 = 5 \\
|
|---|
| 50 | \mbox{for} & C \geq 13.804 & x_0 = 0.326 C -2.5 & x_1 = 5 .
|
|---|
| 51 | \end{array}
|
|---|
| 52 | \] |
|---|