source: trunk/documents/UserDoc/UsersGuides/PhysicsReferenceManual/latex/electromagnetic/utils/enloss.tex @ 1292

Last change on this file since 1292 was 1208, checked in by garnier, 15 years ago

CVS update

File size: 8.3 KB
Line 
1\section{Computing the Mean Energy Loss} \label{en_loss}
2 
3Energy loss processes are very similar for \(e+/e-\) , \(\mu+/\mu-\) and
4charged hadrons, so a common description for them was a natural choice in
5Geant4.  Any energy loss process must calculate the continuous and discrete
6energy loss in a material.  Below a given energy threshold the energy loss
7is continuous and above it the energy loss is simulated by the explicit
8production of secondary particles -  gammas, electrons, and positrons.
9
10\subsection{Method}
11
12Let
13\[\frac{d\sigma(Z,E,T)}{dT}\]
14be the differential cross-section per atom (atomic number $Z$) for the ejection
15of a secondary particle with kinetic energy $T$ by an incident particle of
16total energy $E$ moving in a material of density $\rho$.  The value of the
17{\em kinetic energy cut-off} or {\em production threshold} is denoted by
18$T_{cut}$.  Below this threshold the soft secondaries ejected are simulated as
19continuous energy loss by the incident particle, and above it they are
20explicitly generated.  The mean rate of energy loss is given by:
21\begin{equation}
22\label{comion.a}
23\frac{dE_{soft}(E,T_{cut})}{dx} = n_{at} \cdot
24 \int_{0}^{T_{cut}} \frac{d \sigma (Z,E,T)}{dT} T \: dT 
25\end{equation}
26where $n_{at}$ is the number of atoms per volume in the material.
27The total cross section per atom for the ejection of a secondary of
28energy \linebreak $T > T_{cut}$ is
29\begin{equation}
30\label{comion.b}
31\sigma (Z,E,T_{cut})
32= \int_{T_{cut}}^{T_{max}}\frac{d \sigma (Z,E,T)} {dT} \: dT \,
33\end{equation}
34where $T_{max}$ is the maximum energy transferable to the secondary particle.
35
36\noindent
37If there are several processes providing energy loss for a given particle, then
38the total continuous part of the energy loss is the sum:
39\begin{equation}
40\label{comion.c}
41\frac{dE_{soft}^{tot}(E,T_{cut})}{dx} = \sum_i{\frac{dE_{soft,i}(E,T_{cut})}{dx}}.
42\end{equation}
43These values are pre-calculated during the initialization phase of {\sc Geant4}
44and stored in the $dE/dx$ table. Using this table the ranges of the particle in
45given materials are calculated and stored in the $Range$ table. The $Range$ 
46table is then inverted to provide the $InverseRange$ table.  At run time,
47values of the particle's continuous energy loss and range are obtained using
48these tables. Concrete processes contributing to the energy loss are not
49involved in the calculation at that moment. In contrast, the production of
50secondaries with kinetic energies above the production threshold is sampled
51by each concrete energy loss process.
52
53The default energy interval for these tables extends from 100 eV to 100 TeV and
54the default number of bins is 120. For muon energy loss processes models are
55valid for higher energies and this interval can be extended up to 1000 PeV.
56Note that this extention should be done for all three processes which
57contribute to muon energy loss.
58
59\subsection{Implementation Details}
60
61Common calculations are performed in the class $G4VEnergyLossProcess$ in which
62the following methods are implemented:
63\begin{itemize}
64\item
65BuildPhysicsTable;
66\item
67StorePhysicsTable;
68\item
69RetrievePhysicsTable;
70\item
71AlongStepDoIt;
72\item
73PostStepDoIt;
74\item
75GetMeanFreePath;
76\item
77GetContinuousStepLimit;
78\item
79MicroscopicCrossSection;
80\item
81GetDEDXDispersion;
82\item
83SetMinKinEnergy;
84\item
85SetMaxKinEnergy;
86\item
87SetDEDXBinning;
88\item
89SetLambdaBinning;
90\end{itemize}
91This interface is used by the following processes:
92\begin{itemize}
93\item
94G4eIonisation;
95\item
96G4eBremsstrahlung;
97\item
98G4hIonisation;
99\item
100G4hhIonisation;
101\item
102G4ionIonisation;
103\item
104G4MuIonisation;
105\item
106G4MuBremsstrahlung;
107\item
108G4MuPairProduction.
109\end{itemize}
110These processes mainly provide initialization. The physics models are
111implemented using the $G4VEmModel$ interface. Because a model is defined to
112be active over a given energy range and for a defined set of $G4Region$s,
113an energy loss process can have one or several models defined for a particle
114and $G4Region$. The following models are available:
115\begin{itemize}
116\item
117G4BetheBlochModel;
118\item
119G4BetheBlochNoDeltaModel;
120\item
121G4BraggModel;
122\item
123G4BraggIonModel;
124\item
125G4BraggNoDeltaModel;
126\item
127G4MollerBhabhaModel;
128\item
129G4PAIModel;
130\item
131G4PAIPhotonModel;
132\item
133G4eBremmstrahlungModel;
134\item
135G4MuBetheBlochModel;
136\item
137G4MuBremmstrahlungModel;
138\item
139G4MuPairProductionModel;
140\end{itemize}
141 
142\subsubsection{Stepsize Limit Due to Continuous Energy Loss}
143
144Continuous energy loss imposes a limit on the stepsize because of the
145energy dependence of the cross sections. It is generally assumed in MC programs
146\cite{enloss.G3} 
147that the particle cross sections are approximately constant along a step, i.e.
148the step size should be small enough that the change in cross section, from
149the beginning of the step to the end, is also small.  In principle one must
150use very small steps in order to insure an accurate simulation, however
151the computing time increases as the stepsize decreases. A good compromise is
152to limit the stepsize by not allowing the stopping range of the particle to
153decrease by more than 20 \% during the step. This condition works well for
154particles with kinetic energies $> 1 MeV$, but for lower energies it gives
155very short stepsizes.
156
157To cure this problem a lower limit on the stepsize was introduced.  There is a
158natural choice for this limit: the stepsize cannot be smaller than the
159{\em range cut} parameter of the program.  The stepsize limit varies smoothly
160with decreasing energy from the value given by the
161condition \(\Delta range/range=0.20\) to the lowest possible value
162{\em range cut}. These are the default step limitation parameters; they can be
163overwritten using the UI command ``/process/eLoss/StepFunction 0.2 1 mm'',
164for example.
165
166
167\subsubsection{Energy Loss Computation}
168
169The computation of the {\em mean energy loss} after a given step is done
170by using the $dE/dx$, $Range$, and $InverseRange$ tables. The $dE/dx$ table
171is used if the energy deposition is less than  5 \% of kinetic energy of the
172particle.  When a larger percentage of energy is lost, the mean loss
173\(\Delta T\) can be written as
174  \begin{equation}
175       \Delta T = T_0 - f_T(r_0-step)
176  \end{equation}
177where \(T_0\) is the kinetic energy,
178      \(r_0\)    the range           at the beginning of the step \(step\),
179       the function \(f_T(r)\) is the inverse of the $Range$ table (i.e. it
180       gives the kinetic energy of the particle for a range value of $r$) .
181\\       
182After the mean energy loss has been calculated, the process computes the
183{\em actual} energy loss, i.e. the loss with fluctuations.  The fluctuation
184is computed from a model described in Section \ref{gen_fluctuations}.
185
186
187\subsection{Energy Loss by Heavy Charged Particles}
188
189To save memory
190in the case of hadron energy loss, $dE/dx$, $Range$ and $InverseRange$ tables
191are constructed only for {\em protons}. The energy loss for other heavy,
192charged particles is computed from these tables at the
193{\em scaled kinetic energy} $T_{scaled}$ :
194\begin{equation}
195  T_{scaled} = q^2_{eff}\frac{ M_{proton} T}{ M_{particle}},
196\end{equation}
197where $T$ is the kinetic energy of the particle, $q_{eff}$ its effective
198change in units of positron charge, $M_{proton}$ and
199$M_{particle}$ are the masses of the proton and particle.
200Note that in this approach the small differences between $T_{max}$ 
201values calculated for different changed particles are neglected.
202This is acceptable for hadrons and ions, but is not very accurate
203for the simulation of muon energy loss, which is simulated by a
204separate process. For slow ions effective charge is different from the charge
205of ion nucleus, because of exchange between trasporting ion and the media.
206The effective charge approach is used \cite{enloss.Ziegler88}.
207
208\subsection{Status of this document}
209 09.10.98  created by L. Urb\'an.\\
210 01.12.03  revised by V.Ivanchenko.\\
211 02.12.03  spelling and grammar check by D.H. Wright \\
212 09.12.05  minor update by V.Ivanchenko.\\
213
214\begin{latexonly}
215
216\begin{thebibliography}{99}
217\bibitem{enloss.G3} {\sc geant3} manual
218  {\em Cern Program Library Long Writeup W5013 (1994)}   
219\bibitem{enloss.Ziegler88} J.F.~Ziegler and
220J.M.~Manoyan, Nucl. Instr. and Meth.
221B35 (1988) 215.
222\end{thebibliography}
223
224\end{latexonly}
225
226\begin{htmlonly}
227
228\subsection{Bibliography}
229
230\begin{enumerate}
231\item {\sc geant3} manual
232  {\em Cern Program Library Long Writeup W5013} (1994). 
233\item J.F.~Ziegler and
234J.M.~Manoyan, Nucl. Instr. and Meth.
235B35 (1988) 215.
236\end{enumerate}
237
238\end{htmlonly}
Note: See TracBrowser for help on using the repository browser.