source: trunk/documents/UserDoc/UsersGuides/PhysicsReferenceManual/latex/electromagnetic/utils/fluctuations.tex @ 1292

Last change on this file since 1292 was 1208, checked in by garnier, 15 years ago

CVS update

File size: 10.0 KB
Line 
1
2\section{Energy loss fluctuations}  \label{gen_fluctuations}
3
4
5\subsection{Fluctuations in thick absorbers}
6
7The total continuous energy loss of charged particles is a stochastic
8quantity with a distribution described in terms of a straggling function.
9The straggling is partially taken into account in the simulation
10of energy loss by the production of $\delta$-electrons with energy
11$T > T_c$.  However, continuous energy loss also has fluctuations.
12Hence in the current GEANT4 implementation two different models of
13fluctuations are applied depending on the value of the parameter $\kappa$
14which is the lower limit of the number of interactions of the particle in
15a step.  The default value chosen is $\kappa = 10$. In the case of a high
16range cut (i.e. energy loss without delta ray production)
17for thick absorbers the following condition should be fulfilled:
18\begin{equation}
19\Delta E > \kappa \ T_{max}
20\label{cond}
21\end{equation}
22where $\Delta E$ is the mean continuous energy loss in a track segment of
23length $s$, and $T_{max}$ is the maximum kinetic energy that can be
24transferred to the atomic electron. If this condition holds the fluctuation
25of the total (unrestricted) energy loss follows a  Gaussian distribution. It
26is worth noting that this condition can be true only for heavy particles,
27because for electrons, $T_{max}=T/2$, and for positrons, $T_{max}=T$, where
28$T$ is the kinetic energy of the particle.
29 In order to
30simulate the fluctuation of the continuous (restricted) energy loss, the
31condition should be modified. After a study, the following conditions
32have been chosen:
33\begin{equation}
34\Delta E > \kappa \ T_c
35\label{cond2}
36\end{equation}
37
38 and
39
40\begin{equation}
41T_{max} <=    2  \ T_c
42\label{cond3}
43\end{equation}
44where  $T_c$ is the cut kinetic energy of $\delta$-electrons.  For thick
45absorbers the
46straggling function approaches the Gaussian distribution with Bohr's
47variance \cite{eloss.ICRU49}:
48\begin{equation}
49\Omega^2 = 2\pi r^2_e m_e c^2 N_{el}\frac{Z_h^2}{\beta^2} T_c s
50\left(1 - \frac{\beta^2}{2} \right),
51\label{sig.fluc}
52\end{equation}
53where $r_e$ is the classical electron radius, $N_{el}$ is the electron
54density of the medium, $Z_{h}$ is the charge of the incident particle in
55units of positron charge, and $\beta$ is the relativistic velocity.
56
57
58\subsection{Fluctuations in thin absorbers}
59If the conditions \ref{cond2} and \ref{cond3} are not satisfied the model of
60energy
61fluctuations in thin absorbers is applied.  The formulae used to compute
62the energy loss fluctuation (straggling) are based on a very simple physics
63model of the atom.  It is assumed that the atoms have only two energy levels
64with binding energies $E_1$ and $E_2$. The particle-atom interaction can be
65an excitation with energy loss $E_1$ or $E_2$, or ionization with energy
66loss distributed according to a function $g(E) \sim 1/E^2$ :
67\begin{equation} \label{fluct.eqn0}
68\int_{E_0}^{T_{up}} g(E)\ dE = 1 \Longrightarrow
69     g(E) = \frac{E_0 T_{up}}{T_{up}-E_0} \frac{1}{E^2} .
70\end{equation}
71
72\noindent
73The macroscopic cross section for excitation $(i=1,2)$ is
74\begin{equation} \label{fluct.eqn1}
75  \Sigma_i = C \frac{f_i}{E_i}
76               \frac{\ln[2mc^2 \ (\beta\gamma)^2/E_i]-\beta^2}
77                    {\ln[2mc^2 \ (\beta\gamma)^2/I]-\beta^2}\ (1-r)
78\end{equation}
79and the ionization cross section is
80\begin{equation}  \label{fluct.eqn2}
81     \Sigma_3 = C \frac{T_{up}-E_0}
82         {E_0 T_{up}\ln(\frac{T_{up}}{E_0})}\ r
83\end{equation}
84where $E_0$ denotes the ionization energy of the atom, $I$ is the mean
85ionization energy, $T_{up}$ is the
86production threshold for delta ray production (or the maximum energy
87transfer if this value smaller than the
88production threshold), $E_i$ and $f_i$ are the energy levels and
89corresponding oscillator strengths of the atom, and $C$ and $r$ are model
90parameters.
91\noindent
92The oscillator strengths $f_i$ and energy levels $E_i$ should satisfy the
93constraints
94   \begin{equation}  \label{fluct.eqn3}
95        f_1 + f_2 = 1
96   \end{equation}
97   \begin{equation}   \label{fluct.eqn4}
98        f_1 \cdotp lnE_1 + f_2 \cdotp lnE_2 = lnI .
99   \end{equation}
100The cross section formulae \ref{fluct.eqn1},\ref{fluct.eqn2} and the sum
101rule equations \ref{fluct.eqn3},\ref{fluct.eqn4} can be found e.g. in
102Ref. \cite{straggling.bichsel}.
103\noindent
104The model parameter $C$ can be defined in the following way. The numbers of
105collisions ($n_i$, $i=1,2$ for excitation and $3$ for ionization)
106follow the Poisson distribution with a mean value $\langle n_i \rangle$.
107In a step of length $\Delta x$ the mean number of collisions is given by
108   \begin{equation}
109        \langle n_i \rangle = \Delta x \ \Sigma_i
110   \end{equation}
111The mean energy loss in a step is the sum of the excitation and ionization
112contributions and can be written as
113   \begin{equation}
114     \frac{dE}{dx} \cdotp \Delta x =
115     \left \{ \Sigma_1 E_1 + \Sigma_2 E_2 +
116        \int_{E_0}^{T_{up}} E g(E) dE \right \} \Delta x .
117   \end{equation}
118From this, using eq. \ref{fluct.eqn1} - \ref{fluct.eqn4}, one can see that
119   \begin{equation}
120         C = dE/dx .
121   \end{equation}
122
123\noindent
124The other parameters in the fluctuation model have been chosen
125in the following way. $Z \cdotp f_1$ and $Z \cdotp f_2$ represent in
126the model the number of loosely/tightly bound electrons
127   \begin{equation}
128         f_2 = 0 \hspace {15 pt} for \hspace {15 pt} Z \leq 2.8
129   \end{equation}
130   \begin{equation}
131         f_2 = 2.8/Z \hspace {15 pt} for \hspace {15 pt} Z > 2.8
132   \end{equation}
133   \begin{equation}
134         E_2 = 10 \mbox{ eV } Z^2
135   \end{equation}
136   \begin{equation}
137         E_0 = 10 \mbox{ eV } .
138   \end{equation}
139Using these parameter values, $E_2$ corresponds approximately to the
140K-shell energy of the atoms.
141The parameters $f_1$ and $E_1$ can be obtained from Eqs.~ \ref{fluct.eqn3}
142and \ref{fluct.eqn4}.
143\noindent
144The parameter $r$ is the only variable in the model which can be tuned.
145This parameter determines the relative contribution of ionization and
146excitation to the energy loss. Based on comparisons of simulated energy
147loss distributions to experimental data, its value has been parametrized
148 as
149   \begin{equation}
150      r = 0.03 + 0.23 \cdotp ln(ln(\frac{T_{up}}{I}))
151   \end{equation}
152
153 This simple parametrization in the model gives good
154 values for the most probable energy loss. The width (FWHM) of the energy loss
155 distribution is good too, if the absorber layer is not too thin.
156 In order to get good FWHM in thin absorbers a width correction has been
157 applied. The form of this correction is
158
159  \begin{equation}
160    w = \sqrt{\frac{10 E_1}{\Delta E}} \hspace{25 mm} for \Delta E > 10 E_
161   \end{equation}
162  \begin{equation}
163    w = 1      \hspace{35 mm}           for \Delta E \leq 10 E_
164   \end{equation}
165
166 and the transformation
167   $\langle n_1 \rangle \longrightarrow \langle n_1 \rangle \cdot w$ , $E_1 \longrightarrow \frac{E_1}{w}$ should be applied.
168 This correction is a kind of scaling for the energy of the lower level and for the mean
169 number of excitations with lower energy.
170
171\paragraph{Sampling the energy loss.}
172The energy loss is computed in the model under the assumption that
173the step length (or relative energy loss) is small and, in consequence, the
174cross section can be  considered constant along the step.  The loss due to
175the excitation is
176   \begin{equation}
177         \Delta E_{exc} = n_1 E_1 + n_2 E_2
178   \end{equation}
179where $n_1$ and $n_2$ are sampled from a Poisson distribution. The energy
180loss due to ionization can be generated from the distribution $g(E)$
181by the inverse transformation method :
182   \begin{equation}
183      u = F(E) = \int_{E_0}^E g(x) dx
184   \end{equation}
185   \begin{equation}
186      E = F^{-1}(u) = \frac {E_0}{1-u \frac{T_{up}-E_0}{T_{up}}}
187   \end{equation}
188where $u$ is a uniformly distributed random number $\in [0,\ 1]$.
189The contribution coming from the ionization will then be
190   \begin{equation}
191     \Delta E_{ion} = \sum_{j = 1}^{n3} \frac {E_0}
192                      {1-u_j \frac{T_{up}-E_0}{T_{up}}}
193   \end{equation}
194where $n_3$ is the number of ionizations sampled from the Poisson
195distribution. The total energy loss in a step will be
196$ \Delta E = \Delta E_{exc} + \Delta E_{ion}$ and the energy loss
197fluctuation comes from fluctuations in the number of collisions $n_i$
198 and from the sampling of the ionization loss.
199
200\paragraph{Thick layers}
201If the mean energy loss and step are in the range of validity of the
202Gaussian approximation of the fluctuation, the much faster Gaussian
203sampling is used to compute the actual energy loss.
204
205\paragraph{Conclusions}
206This simple model of energy loss fluctuations is rather fast and can
207be used for any thickness of material.  This has been verified by performing
208many simulations and comparing the results with experimental data, such
209as those in Ref.\cite{straggling.lassila}. \\
210As the limit of validity of Landau's theory is approached, the loss
211distribution approaches the Landau form smoothly.
212
213\subsection{Status of this document}
214 30.01.02  created by L. Urb\'an.\\
215 28.08.02  updated by V.Ivanchenko.\\
216 17.08.04  moved to common to all charged particles (mma) \\
217 04.12.04  spelling and grammar check by D.H. Wright \\
218 04.05.05  updated by L. Urb\'an.\\ 
219 09.12.05  updated by V.Ivanchenko.\\
220 29.03.07  updated by L. Urb\'an.\\
221 
222\begin{latexonly}
223
224\begin{thebibliography}{99}
225\bibitem{straggling.bichsel} H.Bichsel
226   {\em Rev.Mod.Phys. 60 (1988) 663}
227\bibitem{straggling.lassila} K.Lassila-Perini, L.Urb\'an
228   {\em Nucl.Inst.Meth. A362(1995) 416}
229\bibitem{eloss.geant3} {\sc geant3} manual
230  {\em Cern Program Library Long Writeup W5013 (1994)}
231\bibitem{eloss.ICRU49}ICRU (A.~Allisy et al),
232Stopping Powers and Ranges for Protons and Alpha
233Particles,
234ICRU Report 49, 1993.
235\end{thebibliography}
236
237\end{latexonly}
238
239\begin{htmlonly}
240\subsection{Bibliography}
241
242\begin{enumerate}
243\item H.Bichsel {\em Rev.Mod.Phys. 60 (1988) 663}
244\item K.Lassila-Perini, L.Urb\'an
245   {\em Nucl.Inst.Meth. A362(1995) 416}
246\item {\sc geant3} manual
247  {\em Cern Program Library Long Writeup W5013} (1994).
248\item ICRU (A.~Allisy et al),
249Stopping Powers and Ranges for Protons and Alpha
250Particles, ICRU Report 49, 1993.
251\end{enumerate}
252
253\end{htmlonly}
254
Note: See TracBrowser for help on using the repository browser.