| 1 |
|
|---|
| 2 | \section{Synchrotron Radiation}
|
|---|
| 3 |
|
|---|
| 4 | \subsection{Photon spectrum}
|
|---|
| 5 |
|
|---|
| 6 | Synchrotron radiation photons are emitted by relativistic charged particles traveling
|
|---|
| 7 | in magnetic fields. The properties of synchrotron radiation are well understood and
|
|---|
| 8 | described in textbooks\,\cite{SokolovTernov,BookJDJackson, BookHofmannSynRad}.
|
|---|
| 9 |
|
|---|
| 10 | In the simplest case, we have an electron of momentum $p$ moving perpendicular to a
|
|---|
| 11 | homogeneous magnetic field $B$. The magnetic field will keep the particle on a circular
|
|---|
| 12 | path, with radius
|
|---|
| 13 | \begin{equation}
|
|---|
| 14 | \rho = \frac{p}{e\,B}=\frac{m\gamma \beta c}{e\,B}\,.\,\quad \mbox{Numerically we have } \quad \rho[ {\rm m} ] = p [ {\rm GeV/c} ] \, \frac{3.336\,{\rm m}}{B[ {\rm T} ]}\,.
|
|---|
| 15 | \label{eq:rho}
|
|---|
| 16 | \end{equation}
|
|---|
| 17 | In general, there will be an arbitrary angle $\theta$ between the local magnetic field
|
|---|
| 18 | ${\bf B}$ and momentum vector ${\bf p}$ of the particle. The motion has a circular
|
|---|
| 19 | component in the plane perpendicular to the magnetic field, and in addition a constant
|
|---|
| 20 | momentum component parallel to the magnetic field. For a constant homogeneous field,
|
|---|
| 21 | the resulting trajectory is a helix.
|
|---|
| 22 |
|
|---|
| 23 | The critical energy of the synchrotron radiation can be calculated using the radius
|
|---|
| 24 | $\rho$ of Eq.\ref{eq:rho} and angle $\theta$ or the magnetic field perpendicular to the
|
|---|
| 25 | particle direction $B_\perp = B \sin \theta$ according to
|
|---|
| 26 | \begin{equation}
|
|---|
| 27 | E_c = \frac{3}{2}\;\hbar c \, \frac{\gamma^3\sin\theta}{\rho} =
|
|---|
| 28 | \frac{3\,\hbar}{2\,m}\,\,\gamma^2 \,e B_\perp\;.
|
|---|
| 29 | \label{eq:EcritGen}
|
|---|
| 30 | \end{equation}
|
|---|
| 31 | Half of the synchrotron radiation power is radiated by photons above the critical energy.
|
|---|
| 32 |
|
|---|
| 33 | With $x$ we denote the photon energy $E_\gamma$, expressed in units of the critical
|
|---|
| 34 | energy $E_c$
|
|---|
| 35 | \begin{equation}
|
|---|
| 36 | x = \frac{E_\gamma}{E_c}\,.
|
|---|
| 37 | \label{eq:DefOfRatioK}
|
|---|
| 38 | \end{equation}
|
|---|
| 39 |
|
|---|
| 40 | The photon spectrum (number of photons emitted per path length $s$ and relative energy
|
|---|
| 41 | $x$) can be written as
|
|---|
| 42 | \begin{equation}
|
|---|
| 43 | \frac{d^2\,N}{ds\,dx} = \frac{\sqrt{3}\,\alpha}{2\pi}\, \,\frac{e B_\perp}{m c} \,\int_{x}^{\infty} K_{5/3}(\xi)\,d\xi
|
|---|
| 44 | \label{eq:dndx}
|
|---|
| 45 | \end{equation}
|
|---|
| 46 | where $\alpha = e^2 /\;4\pi\epsilon_0\hbar c$ is the dimensionless electromagnetic
|
|---|
| 47 | coupling (or fine structure) constant and $K_{5/3}$ is the modified Bessel function of
|
|---|
| 48 | the third kind.
|
|---|
| 49 |
|
|---|
| 50 | The number of photons emitted per unit length and the mean free path $\lambda$
|
|---|
| 51 | between two photon emissions is obtained by integration over all photon energies. Using
|
|---|
| 52 | \begin{equation}
|
|---|
| 53 | \int_0^\infty\,dx\int_{x}^{\infty} K_{5/3}(\xi)\,d\xi=\frac{5\pi}{3}
|
|---|
| 54 | \end{equation}
|
|---|
| 55 | we find that
|
|---|
| 56 | \begin{equation}
|
|---|
| 57 | \frac{dN}{ds} = \frac{5\,\alpha}{2\sqrt{3}}\,\frac{e B_\perp}{m \beta c} = \frac{1}{\lambda}\,.
|
|---|
| 58 | \end{equation}
|
|---|
| 59 |
|
|---|
| 60 | Here we are only interested in ultra-relativistic ($\beta \approx 1$) particles, for
|
|---|
| 61 | which $\lambda$ only depends on the field $B$ and not on the particle energy. We define
|
|---|
| 62 | a constant $\lambda_B$ such that
|
|---|
| 63 | \begin{equation}
|
|---|
| 64 | \lambda = \frac{\lambda_B}{B_\perp} \qquad \mbox{where} \quad
|
|---|
| 65 | \lambda_B = \frac{2\sqrt{3}}{5}\,\frac{m\,c }{\alpha\,e} = 0.16183\,{\rm T m}\;.
|
|---|
| 66 | \end{equation}
|
|---|
| 67 |
|
|---|
| 68 | As an example, consider a 10\,GeV electron, travelling perpendicular to a 1\,T field.
|
|---|
| 69 | It moves along a circular path of radius $\rho = 33.356\,{\rm m}$. For the Lorentz factor
|
|---|
| 70 | we have $\gamma = 19569.5$ and $\beta= 1-1.4\times10^{-9}$. The critical energy is
|
|---|
| 71 | $E_c = 66.5\,{\rm keV}$ and the mean free path between two photon emissions is
|
|---|
| 72 | $\lambda = 0.16183\,{\rm m}$.
|
|---|
| 73 |
|
|---|
| 74 | \subsection{Validity}
|
|---|
| 75 | The spectrum given in Eq.\,\ref{eq:dndx} can generally be expected to provide a very
|
|---|
| 76 | accurate description for the synchrotron radiation spectrum generated by GeV electrons
|
|---|
| 77 | in magnetic fields.
|
|---|
| 78 |
|
|---|
| 79 | Here we discuss some known limitations and possible extensions.
|
|---|
| 80 |
|
|---|
| 81 | For particles traveling on a circular path, the spectrum observed in one location will
|
|---|
| 82 | in fact not be a continuous spectrum, but a discrete spectrum, consisting only of
|
|---|
| 83 | harmonics or modes $n$ of the revolution frequency. In practice, the mode numbers
|
|---|
| 84 | will generally be too high to make this a visible effect. The critical mode number
|
|---|
| 85 | corresponding to the critical energy is $n_c = 3/2\,\gamma^3$. 10\,GeV electrons for
|
|---|
| 86 | example have $n_c \approx 10^{13}$.
|
|---|
| 87 |
|
|---|
| 88 | Synchrotron radiation can be neglected for slower particles and only becomes
|
|---|
| 89 | relevant for ultra-relativistic particles with $\gamma > 10^3$.
|
|---|
| 90 | Using $\beta = 1$ introduces an uncertainty of about $1/2\gamma^2$ or less than
|
|---|
| 91 | $5\times 10^{-7}$.
|
|---|
| 92 |
|
|---|
| 93 | It is rather straightforward to extend the formulas presented here to particles
|
|---|
| 94 | other than electrons, with arbitrary charge $q$ and mass $m$,
|
|---|
| 95 | see \cite{BurkhardtEdge1998}.
|
|---|
| 96 | The number of photons and the power scales with the square of the charge.
|
|---|
| 97 |
|
|---|
| 98 | The standard synchrotron spectrum of Eq.\,\ref{eq:dndx} is only valid as long as the
|
|---|
| 99 | photon energy remains small compared to the particle
|
|---|
| 100 | energy\,\cite{FritzHerlach1971,Erber:1988tk}. This is a very safe
|
|---|
| 101 | assumption for GeV electrons and standard magnets with fields of order of Tesla.
|
|---|
| 102 |
|
|---|
| 103 | An extension of synchrotron radiation to fields exceeding several hundred Tesla,
|
|---|
| 104 | such as those present in the beam-beam interaction in linear-colliders, is also
|
|---|
| 105 | known as beamstrahlung. For an introduction see\,\cite{Chen_LNP_296}.
|
|---|
| 106 |
|
|---|
| 107 | The standard photon spectrum applies to homogeneous fields and remains a good
|
|---|
| 108 | approximation for magnetic fields which remain approximately constant over a the
|
|---|
| 109 | length $\rho/\gamma$, also known as the formation length for synchrotron radiation.
|
|---|
| 110 | Short magnets and edge fields will result instead in more energetic photons than
|
|---|
| 111 | predicted by the standard spectrum.
|
|---|
| 112 |
|
|---|
| 113 | We also note that short bunches of many particles will start to radiate coherently like
|
|---|
| 114 | a single particle of the equivalent charge at wavelengths which are longer than the bunch dimensions.
|
|---|
| 115 |
|
|---|
| 116 | Low energy, long-wavelength synchrotron radiation may destructively interfere with conducting surfaces\,\cite{Murphy:1996yt}.
|
|---|
| 117 |
|
|---|
| 118 | The soft part of the synchrotron radiation spectrum emitted by charged particles travelling through a medium will be modified
|
|---|
| 119 | for frequencies close to and lower than the plasma frequency\,\cite{Grichine:2002ns}.
|
|---|
| 120 |
|
|---|
| 121 | \subsection{Direct inversion and generation of the photon energy spectrum}
|
|---|
| 122 | The task is to find an algorithm that effectively transforms
|
|---|
| 123 | the flat distribution given by standard pseudo-random generators
|
|---|
| 124 | into the desired distribution proportional to the expressions given in Eqs.\,\ref{eq:dndx},\,\ref{eq:dndx2}.
|
|---|
| 125 | % There are standard techniques to generate an arbitrary
|
|---|
| 126 | % distribution, see for instance \cite{MonteCarloDevroye} or Section\,33 in \cite{Eidelman:2004wy}.
|
|---|
| 127 | % Generally, to obtain the probability density function $f(x)$,
|
|---|
| 128 | The transformation is obtained from the inverse $F^{-1}$ of the
|
|---|
| 129 | cumulative distribution function $F(x)=\int_0^x f(t) dt $.
|
|---|
| 130 |
|
|---|
| 131 | Leaving aside constant factors, the probability density function relevant for the photon energy spectrum is
|
|---|
| 132 | \begin{equation}
|
|---|
| 133 | {\rm SynRad}(x) = \int_x^\infty K_{5/3}(t) dt\;. % \frac{3}{5\pi} \,
|
|---|
| 134 | \label{eq:dndx2}
|
|---|
| 135 | \end{equation}
|
|---|
| 136 | Numerical methods to evaluate $K_{5/3}$ are discussed in \cite{Luke_special_func}. An efficient algorithm to evaluate
|
|---|
| 137 | the integral SynRad using Chebyshev polynomials is described in\,\cite{Umstaetter_synrad}. This has been used in an
|
|---|
| 138 | earlier version of the Monte Carlo generator for synchrotron radiation using approximate transformations and the
|
|---|
| 139 | rejection method\,\cite{LEP_Note_632}.
|
|---|
| 140 |
|
|---|
| 141 | The cumulative distribution function is the integral of the probability density function. Here we have
|
|---|
| 142 | \begin{equation}
|
|---|
| 143 | {\rm SynRadInt}(z) = \int_z^\infty \, {\rm SynRad}(x)\,dx\;,
|
|---|
| 144 | \label{eq:SynRadInt}
|
|---|
| 145 | \end{equation}
|
|---|
| 146 | with normalization
|
|---|
| 147 | \begin{equation}
|
|---|
| 148 | {\rm SynRadInt}(0) = \int_0^\infty \, {\rm SynRad}(x)\,dx\ = \frac{5\pi}{3}\;,
|
|---|
| 149 | \end{equation}
|
|---|
| 150 | such that $\frac{3}{5\pi}{\rm SynRadInt}(x)$ gives the fraction of photons above $x$.
|
|---|
| 151 |
|
|---|
| 152 | It is possible to directly obtain the desired distribution with a fast and accurate algorithm using an analytical
|
|---|
| 153 | description based on simple transformations and Chebyshev polynomials. This approach is used here.
|
|---|
| 154 |
|
|---|
| 155 | We now describe in some detail how the analytical description was obtained. For more details see \cite{InvSynFracInt_report}.
|
|---|
| 156 |
|
|---|
| 157 | It turned out to be convenient to start from the normalized complement rather then Eq.\,\ref{eq:SynRadInt} directly, that is
|
|---|
| 158 | \begin{equation}
|
|---|
| 159 | {\rm SynFracInt}(x) = \frac{3}{5\pi} \int_0^x \int_x^\infty K_{5/3}(t) dt\,dx
|
|---|
| 160 | = 1 - \frac{3}{5\pi} \, {\rm SynRadInt}(x)\;,
|
|---|
| 161 | \end{equation}
|
|---|
| 162 | which gives the fraction of photons below $x$.
|
|---|
| 163 |
|
|---|
| 164 | \begin{figure}
|
|---|
| 165 | \center{
|
|---|
| 166 | \includegraphics[scale=.7]{electromagnetic/xrays/SynchRad/SynFracIntxyLog.eps}
|
|---|
| 167 | \includegraphics[scale=.7]{electromagnetic/xrays/SynchRad/InvSynFracIntxyLog.eps}}
|
|---|
| 168 | \vspace{-2mm}\caption{SynFracInt (left) and its inverse InvSynFracInt (right), on a $\log x$ scale.
|
|---|
| 169 | The functions $x^{1/3}$, $y^3$ and $1-e^{-x}$, $-\log(1-y)$ are shown as dashed lines.}
|
|---|
| 170 | \label{plot:SynFracIntxyLog}
|
|---|
| 171 | \end{figure}
|
|---|
| 172 | %---------figure end
|
|---|
| 173 |
|
|---|
| 174 | Figure\,\ref{plot:SynFracIntxyLog} shows on the left hand side $y = {\rm SynFracInt(x)}$ and on the right hand side the inverse
|
|---|
| 175 | $x = {\rm InvSynFracInt}(y)$ together with simple approximate functions.
|
|---|
| 176 | We can see, that SynFracInt can be approximated by $x^{1/3}$ for small arguments, and by $1-e^{-x}$ for large $x$.
|
|---|
| 177 | Consequently, we have for the inverse, ${\rm InvSynFracInt}(y)$, which can be approximated for small $y$ by $y^3$
|
|---|
| 178 | and for large $y$ by $-\log(1-y)$.
|
|---|
| 179 |
|
|---|
| 180 | Good convergence for ${\rm InvSynFracInt}(y)$ was obtained using Chebyshev polynomials combined with the approximate expressions
|
|---|
| 181 | for small and large arguments.
|
|---|
| 182 | For intermediate values, a Chebyshev polynomial can be used directly.
|
|---|
| 183 | Table\,\ref{tab:InvSynFracInt} summarizes the expressions used in the different intervals.
|
|---|
| 184 |
|
|---|
| 185 | \begin{table}[htbp]\center
|
|---|
| 186 | \caption{InvSynFracInt.}
|
|---|
| 187 | \label{tab:InvSynFracInt}\vskip 1mm
|
|---|
| 188 | \begin{tabular} {|cc|} \hline
|
|---|
| 189 | $y$ & $x={\rm InvSynFracInt}(y)$ \\ \hline
|
|---|
| 190 | $y<0.7$ & $y^3 \, {\rm P}_{\rm Ch}(y)$ \\
|
|---|
| 191 | $0.7 \leq y \leq 0.9999$ & ${\rm P}_{\rm Ch}(y)$ \\
|
|---|
| 192 | $y > 0.9999$ & $-\log(1-y) {\rm P}_{\rm Ch}(-\log(1-y))$ \\
|
|---|
| 193 | \hline
|
|---|
| 194 | \end{tabular}
|
|---|
| 195 | \end{table}
|
|---|
| 196 |
|
|---|
| 197 | \noindent
|
|---|
| 198 | The procedure for Monte Carlo simulation is to generate $y$ at random uniformly distributed between $0$ at $1$,
|
|---|
| 199 | as provided by standard random generators, and then to calculate the
|
|---|
| 200 | energy $x$ in units of the critical energy according to $x={\rm InvSynFracInt}(y)$.
|
|---|
| 201 |
|
|---|
| 202 | The numerical accuracy of the energy spectrum presented here is about 14 decimal places, close to the machine precision.
|
|---|
| 203 | Fig.\,\ref{gesynrad_Direct_gen_1} shows a comparison of generated and expected spectra.
|
|---|
| 204 | %---------figure start
|
|---|
| 205 | \begin{figure}
|
|---|
| 206 | \center
|
|---|
| 207 | \includegraphics[scale=0.7]{electromagnetic/xrays/SynchRad/gesynrad_Direct_gen_1.eps}
|
|---|
| 208 | \vspace{-2mm}\caption{Comparison of the exact (smooth curve) and generated (histogram) spectra for $2\times 10^7$ events.
|
|---|
| 209 | The photon spectrum is shown on the left and the power spectrum on the right side.}
|
|---|
| 210 | \label{gesynrad_Direct_gen_1}
|
|---|
| 211 | \end{figure}
|
|---|
| 212 | %---------figure end
|
|---|
| 213 | A Geant4 display of an electron moving in a magnetic field radiating synchrotron photons is presented in
|
|---|
| 214 | Fig.\,\ref{plot:SynRadGeant4} %---------figure start
|
|---|
| 215 | \begin{figure}
|
|---|
| 216 | \center
|
|---|
| 217 | \includegraphics[width=12cm]{electromagnetic/xrays/SynchRad/g4_TestEm16.eps}
|
|---|
| 218 | \vspace{-2mm}\caption{Geant4 display. 10 GeV e$^+$ moving initially in x-direction, bends downwards on a circular
|
|---|
| 219 | path by a 0.1\,T magnetic field in z-direction.}
|
|---|
| 220 | \label{plot:SynRadGeant4}
|
|---|
| 221 | \end{figure}
|
|---|
| 222 | %---------figure end
|
|---|
| 223 |
|
|---|
| 224 |
|
|---|
| 225 | \subsection{Properties of the photon energy and power spectra}
|
|---|
| 226 |
|
|---|
| 227 | The normalised probability function describing the photon energy spectrum is
|
|---|
| 228 | \begin{equation}
|
|---|
| 229 | n_\gamma(x) = \frac{3}{5\pi} \int_x^\infty K_{5/3}(t) dt\;.
|
|---|
| 230 | \label{eq:ngam}
|
|---|
| 231 | \end{equation}
|
|---|
| 232 | $n_\gamma(x)$ gives the fraction of photons in the interval $x$ to $x+dx$, where $x$ is the photon energy in units
|
|---|
| 233 | of the critical energy.
|
|---|
| 234 |
|
|---|
| 235 | The first moment or mean value is
|
|---|
| 236 | \begin{equation}
|
|---|
| 237 | \mu = \int_0^\infty x \, n_\gamma(x) \, dx = \frac{8}{15\,\sqrt{3}}\;.
|
|---|
| 238 | \end{equation}
|
|---|
| 239 | implying that the mean photon energy is $\frac{8}{15\,\sqrt{3}} = 0.30792$ of the critical energy.\\ \\
|
|---|
| 240 | The second moment about the mean, or variance, is
|
|---|
| 241 | \begin{equation}
|
|---|
| 242 | \sigma^2 = \int_0^\infty (x-\mu)^2 \, n_\gamma(x) \, dx = \frac{211}{675}\;,
|
|---|
| 243 | \end{equation}
|
|---|
| 244 | and the r.m.s. value of the photon energy spectrum is $\sigma=\sqrt{\frac{211}{675}}=0.5591$.
|
|---|
| 245 |
|
|---|
| 246 | The normalised power spectrum is
|
|---|
| 247 | \begin{equation}
|
|---|
| 248 | P_\gamma(x) = \frac{9\sqrt{3}}{8\pi} \, x \int_x^\infty K_{5/3}(t) dt\;.
|
|---|
| 249 | \end{equation}
|
|---|
| 250 | $P_\gamma(x)$ gives the fraction of the power which is radiated in the interval $x$ to $x+dx$.
|
|---|
| 251 |
|
|---|
| 252 | Half of the power is radiated below the critical energy
|
|---|
| 253 | \begin{equation}
|
|---|
| 254 | \int_0^1 P_\gamma(x)\,dx = 0.5000
|
|---|
| 255 | \end{equation}
|
|---|
| 256 |
|
|---|
| 257 | The mean value of the power spectrum is
|
|---|
| 258 | \begin{equation}
|
|---|
| 259 | \mu = \int_0^\infty x \, P_\gamma(x) \, dx = \frac{55}{24\,\sqrt{3}} = 1.32309\;.
|
|---|
| 260 | \end{equation}
|
|---|
| 261 | The variance is
|
|---|
| 262 | \begin{equation}
|
|---|
| 263 | \sigma^2 = \int_0^\infty (x-\mu)^2 \, P_\gamma(x) \, dx = \frac{2351}{1728}\;,
|
|---|
| 264 | \end{equation}
|
|---|
| 265 | and the r.m.s. width is $\sigma=\sqrt{\frac{2351}{1728}}=1.16642$.
|
|---|
| 266 |
|
|---|
| 267 | \subsection{Status of this document}
|
|---|
| 268 | 08.06.06 created by H.~Burkhardt\\
|
|---|
| 269 |
|
|---|
| 270 | %% \providecommand{\href}[2]{#2}\begingroup\raggedright\begin{thebibliography}{10}
|
|---|
| 271 | \begin{latexonly}
|
|---|
| 272 | \begin{thebibliography}{99}
|
|---|
| 273 |
|
|---|
| 274 | \bibitem{SokolovTernov}
|
|---|
| 275 | A.A.Sokolov and I.M.Ternov, {\em {Radiation from Relativistic Electrons}},
|
|---|
| 276 | \newblock Amer. Inst of Physics, 1986.
|
|---|
| 277 |
|
|---|
| 278 | \bibitem{BookJDJackson}
|
|---|
| 279 | J.~Jackson, {\em {Classical Electrodynamics}}.
|
|---|
| 280 | \newblock John Wiley \& Sons, third~ed., 1998.
|
|---|
| 281 |
|
|---|
| 282 | \bibitem{BookHofmannSynRad}
|
|---|
| 283 | A.~Hofmann, {\em {The Physics of Synchrotron Radiation}}.
|
|---|
| 284 | \newblock Cambridge University Press, 2004.
|
|---|
| 285 |
|
|---|
| 286 | \bibitem{BurkhardtEdge1998}
|
|---|
| 287 | H.~Burkhardt, ``{Reminder of the Edge Effect in Synchrotron Radiation}'', LHC
|
|---|
| 288 | Project Note 172, CERN Geneva 1998.
|
|---|
| 289 |
|
|---|
| 290 | \bibitem{FritzHerlach1971}
|
|---|
| 291 | F.~Herlach, R.~McBroom, T.~Erber, J.~.Murray, and R.~Gearhart, ``{Experiments
|
|---|
| 292 | with Megagauss targets at SLAC}'', IEEE Trans Nucl Sci, NS 18, 3 (1971)
|
|---|
| 293 | 809-814.
|
|---|
| 294 |
|
|---|
| 295 | \bibitem{Erber:1988tk}
|
|---|
| 296 | T.~Erber, G.~B. Baumgartner, D.~White, and H.~G. Latal, ``Megagauss
|
|---|
| 297 | Bremsstrahlung and Radiation Reaction'', in *Batavia 1983, proceedings, High
|
|---|
| 298 | Energy Accelerators*, 372-374.
|
|---|
| 299 |
|
|---|
| 300 | \bibitem{Chen_LNP_296}
|
|---|
| 301 | P.~Chen, ``{An Introduction to Beamstrahlung and Disruption}'', in {\em
|
|---|
| 302 | Frontiers of Particle Beams}, M.~Month and S.~Turner, eds., Lecture Notes in
|
|---|
| 303 | Physics 296, pp.~481--494.
|
|---|
| 304 | \newblock Springer-Verlag, 1986.
|
|---|
| 305 |
|
|---|
| 306 | \bibitem{Murphy:1996yt}
|
|---|
| 307 | J.~B. Murphy, S.~Krinsky, and R.~L. Gluckstern, ``Longitudinal wakefield for an
|
|---|
| 308 | electron moving on a circular orbit'', {\em Part. Acc.} { 57} (1997) 9.
|
|---|
| 309 |
|
|---|
| 310 | \bibitem{Grichine:2002ns}
|
|---|
| 311 | V.~M. Grichine, ``Radiation of accelerated charge in absorbing medium'',
|
|---|
| 312 | CERN-OPEN-2002-056.
|
|---|
| 313 |
|
|---|
| 314 | \bibitem{Luke_special_func}
|
|---|
| 315 | Y.~Luke, ``{The special functions and their approximations}'', New York, NY:
|
|---|
| 316 | Academic Press, 1975.- 585 p.
|
|---|
| 317 |
|
|---|
| 318 | \bibitem{Umstaetter_synrad}
|
|---|
| 319 | H.H.Umst\"atter. CERN/PS/SM/81-13, CERN Geneva 1981.
|
|---|
| 320 |
|
|---|
| 321 | \bibitem{LEP_Note_632}
|
|---|
| 322 | H.~Burkhardt, ``{Monte Carlo Generator for Synchrotron Radiation}'', LEP Note
|
|---|
| 323 | 632, CERN, December, 1990.
|
|---|
| 324 |
|
|---|
| 325 | \bibitem{InvSynFracInt_report}
|
|---|
| 326 | H.~Burkhardt, ``{Monte Carlo Generation of the Energy Spectrum of Synchrotron
|
|---|
| 327 | Radiation}'', {to be published as CERN-AB and EuroTeV report}.
|
|---|
| 328 |
|
|---|
| 329 | %% \end{thebibliography}\endgroup
|
|---|
| 330 | \end{thebibliography}
|
|---|
| 331 | \end{latexonly}
|
|---|
| 332 |
|
|---|
| 333 | \begin{htmlonly}
|
|---|
| 334 | \subsection{Bibliography}
|
|---|
| 335 | \begin{enumerate}
|
|---|
| 336 |
|
|---|
| 337 | \item{SokolovTernov}
|
|---|
| 338 | A.A.Sokolov and I.M.Ternov, {\em {Radiation from Relativistic Electrons}},
|
|---|
| 339 | \newblock Amer. Inst of Physics, 1986.
|
|---|
| 340 |
|
|---|
| 341 | \item{BookJDJackson}
|
|---|
| 342 | J.~Jackson, {\em {Classical Electrodynamics}}.
|
|---|
| 343 | \newblock John Wiley \& Sons, third~ed., 1998.
|
|---|
| 344 |
|
|---|
| 345 | \item{BookHofmannSynRad}
|
|---|
| 346 | A.~Hofmann, {\em {The Physics of Synchrotron Radiation}}.
|
|---|
| 347 | \newblock Cambridge University Press, 2004.
|
|---|
| 348 |
|
|---|
| 349 | \item{BurkhardtEdge1998}
|
|---|
| 350 | H.~Burkhardt, ``{Reminder of the Edge Effect in Synchrotron Radiation}'', LHC
|
|---|
| 351 | Project Note 172, CERN Geneva 1998.
|
|---|
| 352 |
|
|---|
| 353 | \item{FritzHerlach1971}
|
|---|
| 354 | F.~Herlach, R.~McBroom, T.~Erber, J.~.Murray, and R.~Gearhart, ``{Experiments
|
|---|
| 355 | with Megagauss targets at SLAC}'', IEEE Trans Nucl Sci, NS 18, 3 (1971)
|
|---|
| 356 | 809-814.
|
|---|
| 357 |
|
|---|
| 358 | \item{Erber:1988tk}
|
|---|
| 359 | T.~Erber, G.~B. Baumgartner, D.~White, and H.~G. Latal, ``Megagauss
|
|---|
| 360 | Bremsstrahlung and Radiation Reaction'', in *Batavia 1983, proceedings, High
|
|---|
| 361 | Energy Accelerators*, 372-374.
|
|---|
| 362 |
|
|---|
| 363 | \item{Chen_LNP_296}
|
|---|
| 364 | P.~Chen, ``{An Introduction to Beamstrahlung and Disruption}'', in {\em
|
|---|
| 365 | Frontiers of Particle Beams}, M.~Month and S.~Turner, eds., Lecture Notes in
|
|---|
| 366 | Physics 296, pp.~481--494.
|
|---|
| 367 | \newblock Springer-Verlag, 1986.
|
|---|
| 368 |
|
|---|
| 369 | \item{Murphy:1996yt}
|
|---|
| 370 | J.~B. Murphy, S.~Krinsky, and R.~L. Gluckstern, ``Longitudinal wakefield for an
|
|---|
| 371 | electron moving on a circular orbit'', {\em Part. Acc.} { 57} (1997) 9.
|
|---|
| 372 |
|
|---|
| 373 | \item{Grichine:2002ns}
|
|---|
| 374 | V.~M. Grichine, ``Radiation of accelerated charge in absorbing medium'',
|
|---|
| 375 | CERN-OPEN-2002-056.
|
|---|
| 376 |
|
|---|
| 377 | \item{Luke_special_func}
|
|---|
| 378 | Y.~Luke, ``{The special functions and their approximations}'', New York, NY:
|
|---|
| 379 | Academic Press, 1975.- 585 p.
|
|---|
| 380 |
|
|---|
| 381 | \item{Umstaetter_synrad}
|
|---|
| 382 | H.H.Umst\"atter. CERN/PS/SM/81-13, CERN Geneva 1981.
|
|---|
| 383 |
|
|---|
| 384 | \item{LEP_Note_632}
|
|---|
| 385 | H.~Burkhardt, ``{Monte Carlo Generator for Synchrotron Radiation}'', LEP Note
|
|---|
| 386 | 632, CERN, December, 1990.
|
|---|
| 387 |
|
|---|
| 388 | \item{InvSynFracInt_report}
|
|---|
| 389 | H.~Burkhardt, ``{Monte Carlo Generation of the Energy Spectrum of Synchrotron
|
|---|
| 390 | Radiation}'', {to be published as CERN-AB and EuroTeV report}.
|
|---|
| 391 |
|
|---|
| 392 | \end{enumerate}
|
|---|
| 393 | \end{htmlonly}
|
|---|