source: trunk/documents/UserDoc/UsersGuides/PhysicsReferenceManual/latex/electromagnetic/xrays/SynchRad/InvSynFracInt_Geant4.tex

Last change on this file was 1208, checked in by garnier, 16 years ago

CVS update

  • Property svn:executable set to *
File size: 16.9 KB
Line 
1
2\section{Synchrotron Radiation}
3
4\subsection{Photon spectrum}
5
6Synchrotron radiation photons are emitted by relativistic charged particles traveling
7in magnetic fields. The properties of synchrotron radiation are well understood and
8described in textbooks\,\cite{SokolovTernov,BookJDJackson, BookHofmannSynRad}.
9
10In the simplest case, we have an electron of momentum $p$ moving perpendicular to a
11homogeneous magnetic field $B$. The magnetic field will keep the particle on a circular
12path, with radius
13\begin{equation}
14\rho = \frac{p}{e\,B}=\frac{m\gamma \beta c}{e\,B}\,.\,\quad \mbox{Numerically we have } \quad \rho[ {\rm m} ] = p [ {\rm GeV/c} ] \, \frac{3.336\,{\rm m}}{B[ {\rm T} ]}\,.
15\label{eq:rho}
16\end{equation}
17In general, there will be an arbitrary angle $\theta$ between the local magnetic field
18${\bf B}$ and momentum vector ${\bf p}$ of the particle. The motion has a circular
19component in the plane perpendicular to the magnetic field, and in addition a constant
20momentum component parallel to the magnetic field. For a constant homogeneous field,
21the resulting trajectory is a helix.
22
23The critical energy of the synchrotron radiation can be calculated using the radius
24$\rho$ of Eq.\ref{eq:rho} and angle $\theta$ or the magnetic field perpendicular to the
25particle direction $B_\perp = B \sin \theta$ according to
26\begin{equation}
27E_c = \frac{3}{2}\;\hbar c \, \frac{\gamma^3\sin\theta}{\rho} =
28\frac{3\,\hbar}{2\,m}\,\,\gamma^2 \,e B_\perp\;.
29\label{eq:EcritGen}
30\end{equation}
31Half of the synchrotron radiation power is radiated by photons above the critical energy.
32
33With $x$ we denote the photon energy $E_\gamma$, expressed in units of the critical
34energy $E_c$
35\begin{equation}
36x = \frac{E_\gamma}{E_c}\,.
37\label{eq:DefOfRatioK}
38\end{equation}
39
40The photon spectrum (number of photons emitted per path length $s$ and relative energy
41$x$) can be written as
42\begin{equation}
43\frac{d^2\,N}{ds\,dx} = \frac{\sqrt{3}\,\alpha}{2\pi}\, \,\frac{e B_\perp}{m c} \,\int_{x}^{\infty} K_{5/3}(\xi)\,d\xi
44\label{eq:dndx}
45\end{equation}
46where $\alpha = e^2 /\;4\pi\epsilon_0\hbar c$ is the dimensionless electromagnetic
47coupling (or fine structure) constant and $K_{5/3}$ is the modified Bessel function of
48the third kind.
49
50The number of photons emitted per unit length and the mean free path $\lambda$
51between two photon emissions is obtained by integration over all photon energies. Using
52\begin{equation}
53\int_0^\infty\,dx\int_{x}^{\infty} K_{5/3}(\xi)\,d\xi=\frac{5\pi}{3}
54\end{equation}
55we find that
56\begin{equation}
57\frac{dN}{ds} = \frac{5\,\alpha}{2\sqrt{3}}\,\frac{e B_\perp}{m \beta c} = \frac{1}{\lambda}\,.
58\end{equation}
59
60Here we are only interested in ultra-relativistic ($\beta \approx 1$) particles, for
61which $\lambda$ only depends on the field $B$ and not on the particle energy. We define
62a constant $\lambda_B$ such that
63\begin{equation}
64\lambda = \frac{\lambda_B}{B_\perp} \qquad \mbox{where} \quad
65\lambda_B = \frac{2\sqrt{3}}{5}\,\frac{m\,c }{\alpha\,e} = 0.16183\,{\rm T m}\;.
66\end{equation}
67
68As an example, consider a 10\,GeV electron, travelling perpendicular to a 1\,T field.
69It moves along a circular path of radius $\rho = 33.356\,{\rm m}$. For the Lorentz factor
70we have $\gamma = 19569.5$ and $\beta= 1-1.4\times10^{-9}$. The critical energy is
71$E_c = 66.5\,{\rm keV}$ and the mean free path between two photon emissions is
72$\lambda = 0.16183\,{\rm m}$.
73
74\subsection{Validity}
75The spectrum given in Eq.\,\ref{eq:dndx} can generally be expected to provide a very
76accurate description for the synchrotron radiation spectrum generated by GeV electrons
77in magnetic fields.
78
79Here we discuss some known limitations and possible extensions.
80
81For particles traveling on a circular path, the spectrum observed in one location will
82in fact not be a continuous spectrum, but a discrete spectrum, consisting only of
83harmonics or modes $n$ of the revolution frequency. In practice, the mode numbers
84will generally be too high to make this a visible effect. The critical mode number
85corresponding to the critical energy is $n_c = 3/2\,\gamma^3$. 10\,GeV electrons for
86example have $n_c \approx 10^{13}$.
87
88Synchrotron radiation can be neglected for slower particles and only becomes
89relevant for ultra-relativistic particles with $\gamma > 10^3$.
90Using $\beta = 1$ introduces an uncertainty of about $1/2\gamma^2$ or less than
91$5\times 10^{-7}$.
92
93It is rather straightforward to extend the formulas presented here to particles
94other than electrons, with arbitrary charge $q$ and mass $m$,
95see \cite{BurkhardtEdge1998}.
96The number of photons and the power scales with the square of the charge.
97
98The standard synchrotron spectrum of Eq.\,\ref{eq:dndx} is only valid as long as the
99photon energy remains small compared to the particle
100energy\,\cite{FritzHerlach1971,Erber:1988tk}. This is a very safe
101assumption for GeV electrons and standard magnets with fields of order of Tesla.
102
103An extension of synchrotron radiation to fields exceeding several hundred Tesla,
104such as those present in the beam-beam interaction in linear-colliders, is also
105known as beamstrahlung. For an introduction see\,\cite{Chen_LNP_296}.
106
107The standard photon spectrum applies to homogeneous fields and remains a good
108approximation for magnetic fields which remain approximately constant over a the
109length $\rho/\gamma$, also known as the formation length for synchrotron radiation.
110Short magnets and edge fields will result instead in more energetic photons than
111predicted by the standard spectrum.
112
113We also note that short bunches of many particles will start to radiate coherently like
114a single particle of the equivalent charge at wavelengths which are longer than the bunch dimensions.
115
116Low energy, long-wavelength synchrotron radiation may destructively interfere with conducting surfaces\,\cite{Murphy:1996yt}.
117
118The soft part of the synchrotron radiation spectrum emitted by charged particles travelling through a medium will be modified
119for frequencies close to and lower than the plasma frequency\,\cite{Grichine:2002ns}.
120
121\subsection{Direct inversion and generation of the photon energy spectrum}
122The task is to find an algorithm that effectively transforms
123the flat distribution given by standard pseudo-random generators
124into the desired distribution proportional to the expressions given in Eqs.\,\ref{eq:dndx},\,\ref{eq:dndx2}.
125% There are standard techniques to generate an arbitrary
126% distribution, see for instance \cite{MonteCarloDevroye} or Section\,33 in \cite{Eidelman:2004wy}.
127% Generally, to obtain the probability density function $f(x)$,
128The transformation is obtained from the inverse $F^{-1}$ of the
129cumulative distribution function $F(x)=\int_0^x f(t) dt $.
130
131Leaving aside constant factors, the probability density function relevant for the photon energy spectrum is
132\begin{equation}
133{\rm SynRad}(x) = \int_x^\infty K_{5/3}(t) dt\;. % \frac{3}{5\pi} \,
134\label{eq:dndx2}
135\end{equation}
136Numerical methods to evaluate $K_{5/3}$ are discussed in \cite{Luke_special_func}. An efficient algorithm to evaluate
137the integral SynRad using Chebyshev polynomials is described in\,\cite{Umstaetter_synrad}. This has been used in an
138earlier version of the Monte Carlo generator for synchrotron radiation using approximate transformations and the
139rejection method\,\cite{LEP_Note_632}.
140
141The cumulative distribution function is the integral of the probability density function. Here we have
142\begin{equation}
143{\rm SynRadInt}(z) = \int_z^\infty \, {\rm SynRad}(x)\,dx\;,
144\label{eq:SynRadInt}
145\end{equation}
146with normalization
147\begin{equation}
148{\rm SynRadInt}(0) = \int_0^\infty \, {\rm SynRad}(x)\,dx\ = \frac{5\pi}{3}\;,
149\end{equation}
150such that $\frac{3}{5\pi}{\rm SynRadInt}(x)$ gives the fraction of photons above $x$.
151
152It is possible to directly obtain the desired distribution with a fast and accurate algorithm using an analytical
153description based on simple transformations and Chebyshev polynomials. This approach is used here.
154
155We now describe in some detail how the analytical description was obtained. For more details see \cite{InvSynFracInt_report}.
156
157It turned out to be convenient to start from the normalized complement rather then Eq.\,\ref{eq:SynRadInt} directly, that is
158\begin{equation}
159{\rm SynFracInt}(x) = \frac{3}{5\pi} \int_0^x \int_x^\infty K_{5/3}(t) dt\,dx
160= 1 - \frac{3}{5\pi} \, {\rm SynRadInt}(x)\;,
161\end{equation}
162which gives the fraction of photons below $x$.
163
164\begin{figure}
165\center{
166\includegraphics[scale=.7]{electromagnetic/xrays/SynchRad/SynFracIntxyLog.eps}
167\includegraphics[scale=.7]{electromagnetic/xrays/SynchRad/InvSynFracIntxyLog.eps}}
168 \vspace{-2mm}\caption{SynFracInt (left) and its inverse InvSynFracInt (right), on a $\log x$ scale.
169 The functions $x^{1/3}$, $y^3$ and $1-e^{-x}$, $-\log(1-y)$ are shown as dashed lines.}
170 \label{plot:SynFracIntxyLog}
171\end{figure}
172%---------figure end
173
174Figure\,\ref{plot:SynFracIntxyLog} shows on the left hand side $y = {\rm SynFracInt(x)}$ and on the right hand side the inverse
175$x = {\rm InvSynFracInt}(y)$ together with simple approximate functions.
176We can see, that SynFracInt can be approximated by $x^{1/3}$ for small arguments, and by $1-e^{-x}$ for large $x$.
177Consequently, we have for the inverse, ${\rm InvSynFracInt}(y)$, which can be approximated for small $y$ by $y^3$
178and for large $y$ by $-\log(1-y)$.
179
180Good convergence for ${\rm InvSynFracInt}(y)$ was obtained using Chebyshev polynomials combined with the approximate expressions
181for small and large arguments.
182For intermediate values, a Chebyshev polynomial can be used directly.
183Table\,\ref{tab:InvSynFracInt} summarizes the expressions used in the different intervals.
184
185\begin{table}[htbp]\center
186\caption{InvSynFracInt.}
187\label{tab:InvSynFracInt}\vskip 1mm
188\begin{tabular} {|cc|} \hline
189$y$ & $x={\rm InvSynFracInt}(y)$ \\ \hline
190$y<0.7$ & $y^3 \, {\rm P}_{\rm Ch}(y)$ \\
191$0.7 \leq y \leq 0.9999$ & ${\rm P}_{\rm Ch}(y)$ \\
192$y > 0.9999$ & $-\log(1-y) {\rm P}_{\rm Ch}(-\log(1-y))$ \\
193\hline
194\end{tabular}
195\end{table}
196
197\noindent
198The procedure for Monte Carlo simulation is to generate $y$ at random uniformly distributed between $0$ at $1$,
199as provided by standard random generators, and then to calculate the
200energy $x$ in units of the critical energy according to $x={\rm InvSynFracInt}(y)$.
201
202The numerical accuracy of the energy spectrum presented here is about 14 decimal places, close to the machine precision.
203Fig.\,\ref{gesynrad_Direct_gen_1} shows a comparison of generated and expected spectra.
204%---------figure start
205\begin{figure}
206\center
207\includegraphics[scale=0.7]{electromagnetic/xrays/SynchRad/gesynrad_Direct_gen_1.eps}
208\vspace{-2mm}\caption{Comparison of the exact (smooth curve) and generated (histogram) spectra for $2\times 10^7$ events.
209The photon spectrum is shown on the left and the power spectrum on the right side.}
210 \label{gesynrad_Direct_gen_1}
211\end{figure}
212%---------figure end
213A Geant4 display of an electron moving in a magnetic field radiating synchrotron photons is presented in
214Fig.\,\ref{plot:SynRadGeant4} %---------figure start
215\begin{figure}
216\center
217\includegraphics[width=12cm]{electromagnetic/xrays/SynchRad/g4_TestEm16.eps}
218\vspace{-2mm}\caption{Geant4 display. 10 GeV e$^+$ moving initially in x-direction, bends downwards on a circular
219path by a 0.1\,T magnetic field in z-direction.}
220 \label{plot:SynRadGeant4}
221\end{figure}
222%---------figure end
223
224
225\subsection{Properties of the photon energy and power spectra}
226
227The normalised probability function describing the photon energy spectrum is
228\begin{equation}
229n_\gamma(x) = \frac{3}{5\pi} \int_x^\infty K_{5/3}(t) dt\;.
230\label{eq:ngam}
231\end{equation}
232$n_\gamma(x)$ gives the fraction of photons in the interval $x$ to $x+dx$, where $x$ is the photon energy in units
233of the critical energy.
234
235The first moment or mean value is
236\begin{equation}
237\mu = \int_0^\infty x \, n_\gamma(x) \, dx = \frac{8}{15\,\sqrt{3}}\;.
238\end{equation}
239implying that the mean photon energy is $\frac{8}{15\,\sqrt{3}} = 0.30792$ of the critical energy.\\ \\
240The second moment about the mean, or variance, is
241\begin{equation}
242\sigma^2 = \int_0^\infty (x-\mu)^2 \, n_\gamma(x) \, dx = \frac{211}{675}\;,
243\end{equation}
244and the r.m.s. value of the photon energy spectrum is $\sigma=\sqrt{\frac{211}{675}}=0.5591$.
245
246The normalised power spectrum is
247\begin{equation}
248P_\gamma(x) = \frac{9\sqrt{3}}{8\pi} \, x \int_x^\infty K_{5/3}(t) dt\;.
249\end{equation}
250$P_\gamma(x)$ gives the fraction of the power which is radiated in the interval $x$ to $x+dx$.
251
252Half of the power is radiated below the critical energy
253\begin{equation}
254\int_0^1 P_\gamma(x)\,dx = 0.5000
255\end{equation}
256
257The mean value of the power spectrum is
258\begin{equation}
259\mu = \int_0^\infty x \, P_\gamma(x) \, dx = \frac{55}{24\,\sqrt{3}} = 1.32309\;.
260\end{equation}
261The variance is
262\begin{equation}
263\sigma^2 = \int_0^\infty (x-\mu)^2 \, P_\gamma(x) \, dx = \frac{2351}{1728}\;,
264\end{equation}
265and the r.m.s. width is $\sigma=\sqrt{\frac{2351}{1728}}=1.16642$.
266
267\subsection{Status of this document}
26808.06.06 created by H.~Burkhardt\\
269
270%% \providecommand{\href}[2]{#2}\begingroup\raggedright\begin{thebibliography}{10}
271\begin{latexonly}
272\begin{thebibliography}{99}
273
274\bibitem{SokolovTernov}
275A.A.Sokolov and I.M.Ternov, {\em {Radiation from Relativistic Electrons}},
276\newblock Amer. Inst of Physics, 1986.
277
278\bibitem{BookJDJackson}
279J.~Jackson, {\em {Classical Electrodynamics}}.
280\newblock John Wiley \& Sons, third~ed., 1998.
281
282\bibitem{BookHofmannSynRad}
283A.~Hofmann, {\em {The Physics of Synchrotron Radiation}}.
284\newblock Cambridge University Press, 2004.
285
286\bibitem{BurkhardtEdge1998}
287H.~Burkhardt, ``{Reminder of the Edge Effect in Synchrotron Radiation}'', LHC
288 Project Note 172, CERN Geneva 1998.
289
290\bibitem{FritzHerlach1971}
291F.~Herlach, R.~McBroom, T.~Erber, J.~.Murray, and R.~Gearhart, ``{Experiments
292 with Megagauss targets at SLAC}'', IEEE Trans Nucl Sci, NS 18, 3 (1971)
293 809-814.
294
295\bibitem{Erber:1988tk}
296T.~Erber, G.~B. Baumgartner, D.~White, and H.~G. Latal, ``Megagauss
297 Bremsstrahlung and Radiation Reaction'', in *Batavia 1983, proceedings, High
298 Energy Accelerators*, 372-374.
299
300\bibitem{Chen_LNP_296}
301P.~Chen, ``{An Introduction to Beamstrahlung and Disruption}'', in {\em
302 Frontiers of Particle Beams}, M.~Month and S.~Turner, eds., Lecture Notes in
303 Physics 296, pp.~481--494.
304\newblock Springer-Verlag, 1986.
305
306\bibitem{Murphy:1996yt}
307J.~B. Murphy, S.~Krinsky, and R.~L. Gluckstern, ``Longitudinal wakefield for an
308 electron moving on a circular orbit'', {\em Part. Acc.} { 57} (1997) 9.
309
310\bibitem{Grichine:2002ns}
311V.~M. Grichine, ``Radiation of accelerated charge in absorbing medium'',
312 CERN-OPEN-2002-056.
313
314\bibitem{Luke_special_func}
315Y.~Luke, ``{The special functions and their approximations}'', New York, NY:
316 Academic Press, 1975.- 585 p.
317
318\bibitem{Umstaetter_synrad}
319H.H.Umst\"atter. CERN/PS/SM/81-13, CERN Geneva 1981.
320
321\bibitem{LEP_Note_632}
322H.~Burkhardt, ``{Monte Carlo Generator for Synchrotron Radiation}'', LEP Note
323 632, CERN, December, 1990.
324
325\bibitem{InvSynFracInt_report}
326H.~Burkhardt, ``{Monte Carlo Generation of the Energy Spectrum of Synchrotron
327 Radiation}'', {to be published as CERN-AB and EuroTeV report}.
328
329%% \end{thebibliography}\endgroup
330\end{thebibliography}
331\end{latexonly}
332
333\begin{htmlonly}
334\subsection{Bibliography}
335\begin{enumerate}
336
337\item{SokolovTernov}
338A.A.Sokolov and I.M.Ternov, {\em {Radiation from Relativistic Electrons}},
339\newblock Amer. Inst of Physics, 1986.
340
341\item{BookJDJackson}
342J.~Jackson, {\em {Classical Electrodynamics}}.
343\newblock John Wiley \& Sons, third~ed., 1998.
344
345\item{BookHofmannSynRad}
346A.~Hofmann, {\em {The Physics of Synchrotron Radiation}}.
347\newblock Cambridge University Press, 2004.
348
349\item{BurkhardtEdge1998}
350H.~Burkhardt, ``{Reminder of the Edge Effect in Synchrotron Radiation}'', LHC
351 Project Note 172, CERN Geneva 1998.
352
353\item{FritzHerlach1971}
354F.~Herlach, R.~McBroom, T.~Erber, J.~.Murray, and R.~Gearhart, ``{Experiments
355 with Megagauss targets at SLAC}'', IEEE Trans Nucl Sci, NS 18, 3 (1971)
356 809-814.
357
358\item{Erber:1988tk}
359T.~Erber, G.~B. Baumgartner, D.~White, and H.~G. Latal, ``Megagauss
360 Bremsstrahlung and Radiation Reaction'', in *Batavia 1983, proceedings, High
361 Energy Accelerators*, 372-374.
362
363\item{Chen_LNP_296}
364P.~Chen, ``{An Introduction to Beamstrahlung and Disruption}'', in {\em
365 Frontiers of Particle Beams}, M.~Month and S.~Turner, eds., Lecture Notes in
366 Physics 296, pp.~481--494.
367\newblock Springer-Verlag, 1986.
368
369\item{Murphy:1996yt}
370J.~B. Murphy, S.~Krinsky, and R.~L. Gluckstern, ``Longitudinal wakefield for an
371 electron moving on a circular orbit'', {\em Part. Acc.} { 57} (1997) 9.
372
373\item{Grichine:2002ns}
374V.~M. Grichine, ``Radiation of accelerated charge in absorbing medium'',
375 CERN-OPEN-2002-056.
376
377\item{Luke_special_func}
378Y.~Luke, ``{The special functions and their approximations}'', New York, NY:
379 Academic Press, 1975.- 585 p.
380
381\item{Umstaetter_synrad}
382H.H.Umst\"atter. CERN/PS/SM/81-13, CERN Geneva 1981.
383
384\item{LEP_Note_632}
385H.~Burkhardt, ``{Monte Carlo Generator for Synchrotron Radiation}'', LEP Note
386 632, CERN, December, 1990.
387
388\item{InvSynFracInt_report}
389H.~Burkhardt, ``{Monte Carlo Generation of the Energy Spectrum of Synchrotron
390 Radiation}'', {to be published as CERN-AB and EuroTeV report}.
391
392\end{enumerate}
393\end{htmlonly}
Note: See TracBrowser for help on using the repository browser.