% GEANT4 Physics Reference Manual - Cerenkov Process % in LaTex 2e - adopted from GEANT3 manual by P. Gumplinger %\documentclass[11pt,twoside,a4page]{article} %\usepackage{epsfig} %\setlength{\parindent}{0pt} %\begin{document} %\title{\v{C}erenkov Process} %\author{P.~Gumplinger} %\date{December 7, 1998} %\maketitle \section{\v{C}erenkov Effect} The radiation of \v{C}erenkov light occurs when a charged particle moves through a dispersive medium faster than the speed of light in that medium. A dispersive medium is one whose index of refraction is an increasing function of photon energy. Two things happen when such a particle slows down: \begin{enumerate} \item a cone of \v{C}erenkov photons is emitted, with the cone angle (measured with respect to the particle momentum) decreasing as the particle loses energy; \item the momentum of the photons produced increases, while the number of photons produced decreases. \end{enumerate} When the particle velocity drops below the local speed of light, photons are no longer emitted. At that point, the \v{C}erenkov cone collapses to zero. \\ \noindent In order to simulate \v{C}erenkov radiation the number of photons per track length must be calculated. The formulae used for this calculation can be found below and in \cite{Jackson98, pdg}. Let $n$ be the refractive index of the dielectric material acting as a radiator. Here $n=c/c'$ where $c'$ is the group velocity of light in the material, hence $1 \leq n$. In a dispersive material $n$ is an increasing function of the photon energy $\epsilon$ ($dn/d\epsilon \geq 0$). A particle traveling with speed $\beta = v/c$ will emit photons at an angle $\theta$ with respect to its direction, where $\theta$ is given by \begin{displaymath} \cos \theta = \frac{1}{\beta n} . \end{displaymath} From this follows the limitation for the momentum of the emitted photons: \begin{displaymath} n(\epsilon_{min}) = \frac{1}{\beta} . \end{displaymath} Photons emitted with an energy beyond a certain value are immediately re-absorbed by the material; this is the window of transparency of the radiator. As a consequence, all photons are contained in a cone of opening angle $\cos \theta_{max} = 1/(\beta n(\epsilon_{max}))$. \\ \noindent The average number of photons produced is given by the relations : \begin{eqnarray*} dN &=& \frac{\alpha z^{2}}{\hbar c}\sin^{2}\theta d\epsilon dx = \frac{\alpha z^{2}}{\hbar c}(1 - \frac{1}{n^{2}\beta^2}) d\epsilon dx \\ & \approx & 370z^{2} \frac{photons}{eV\,cm}(1 - \frac{1}{n^{2}\beta^{2}})d\epsilon dx \end{eqnarray*} and the number of photons generated per track length is \begin{displaymath} \frac{dN}{dx} \approx 370z^{2} \int_{\epsilon_{min}}^{\epsilon_{max}} d\epsilon \left(1 - \frac{1}{n^{2}\beta^2} \right) = 370z^{2} \left \lbrack \epsilon_{max} - \epsilon_{min} - \frac{1}{\beta^{2}} \int_{\epsilon_{min}}^{\epsilon_{max}} \frac{d\epsilon} {n^2 (\epsilon)}\right \rbrack \end{displaymath} . \\ \noindent The number of photons produced is calculated from a Poisson distribution with a mean of $\langle n \rangle = \mbox{StepLength}\ dN/dx$. The energy distribution of the photon is then sampled from the density function \begin{displaymath} f(\epsilon)=\left \lbrack 1 - \frac{1}{n^{2}(\epsilon)\beta^{2}} \right \rbrack \end{displaymath} . \subsection{Status of this document} 07.12.98 created by P.Gumplinger \\ 11.12.01 SI units (mma) \\ 08.05.02 re-written by D.H. Wright \\ \begin{latexonly} \begin{thebibliography}{99} \bibitem{Jackson98} J.D.Jackson, Classical Electrodynamics, John Wiley and Sons (1998) \bibitem{pdg} D.E. Groom et al. Particle Data Group . Rev. of Particle Properties. Eur. Phys. J. C15,1 (2000) http://pdg.lbl.gov/ \end{thebibliography} \end{latexonly} \begin{htmlonly} \subsection{Bibliography} \begin{enumerate} \item J.D.Jackson, Classical Electrodynamics, John Wiley and Sons (1998) \item D.E. Groom et al. Particle Data Group . Rev. of Particle Properties. Eur. Phys. J. C15,1 (2000) http://pdg.lbl.gov/ \end{enumerate} \end{htmlonly}