| 1 | % GEANT4 Physics Reference Manual - Cerenkov Process
|
|---|
| 2 | % in LaTex 2e - adopted from GEANT3 manual by P. Gumplinger
|
|---|
| 3 |
|
|---|
| 4 | %\documentclass[11pt,twoside,a4page]{article}
|
|---|
| 5 | %\usepackage{epsfig}
|
|---|
| 6 |
|
|---|
| 7 | %\setlength{\parindent}{0pt}
|
|---|
| 8 |
|
|---|
| 9 | %\begin{document}
|
|---|
| 10 |
|
|---|
| 11 | %\title{\v{C}erenkov Process}
|
|---|
| 12 | %\author{P.~Gumplinger}
|
|---|
| 13 | %\date{December 7, 1998}
|
|---|
| 14 | %\maketitle
|
|---|
| 15 |
|
|---|
| 16 |
|
|---|
| 17 | \section{\v{C}erenkov Effect}
|
|---|
| 18 |
|
|---|
| 19 | The radiation of \v{C}erenkov light occurs when a charged particle moves
|
|---|
| 20 | through a dispersive medium faster than the speed of light in that medium.
|
|---|
| 21 | A dispersive medium is one whose index of refraction is an increasing function
|
|---|
| 22 | of photon energy. Two things happen when such a particle slows down:
|
|---|
| 23 | \begin{enumerate}
|
|---|
| 24 | \item a cone of \v{C}erenkov photons is emitted, with the cone angle (measured
|
|---|
| 25 | with respect to the particle momentum) decreasing as the particle loses
|
|---|
| 26 | energy;
|
|---|
| 27 |
|
|---|
| 28 | \item the momentum of the photons produced increases, while the number of
|
|---|
| 29 | photons produced decreases.
|
|---|
| 30 | \end{enumerate}
|
|---|
| 31 | When the particle velocity drops below the local speed of light, photons are
|
|---|
| 32 | no longer emitted. At that point, the \v{C}erenkov cone collapses to zero.
|
|---|
| 33 | \\
|
|---|
| 34 |
|
|---|
| 35 | \noindent
|
|---|
| 36 | In order to simulate \v{C}erenkov radiation the number of photons per track
|
|---|
| 37 | length must be calculated. The formulae used for this calculation can be
|
|---|
| 38 | found below and in \cite{Jackson98, pdg}. Let $n$ be the refractive index of
|
|---|
| 39 | the dielectric material acting as a radiator. Here $n=c/c'$ where $c'$ is the
|
|---|
| 40 | group velocity of light in the material, hence $1 \leq n$. In a dispersive
|
|---|
| 41 | material $n$ is an increasing function of the photon energy $\epsilon$
|
|---|
| 42 | ($dn/d\epsilon \geq 0$). A particle traveling with speed $\beta = v/c$ will
|
|---|
| 43 | emit photons at an angle $\theta$ with respect to its direction, where
|
|---|
| 44 | $\theta$ is given by
|
|---|
| 45 | \begin{displaymath}
|
|---|
| 46 | \cos \theta = \frac{1}{\beta n} .
|
|---|
| 47 | \end{displaymath}
|
|---|
| 48 | From this follows the limitation for the momentum of the emitted
|
|---|
| 49 | photons:
|
|---|
| 50 | \begin{displaymath}
|
|---|
| 51 | n(\epsilon_{min}) = \frac{1}{\beta} .
|
|---|
| 52 | \end{displaymath}
|
|---|
| 53 | Photons emitted with an energy beyond a certain value are immediately
|
|---|
| 54 | re-absorbed by the material; this is the window of transparency of the
|
|---|
| 55 | radiator. As a consequence, all photons are contained in a cone of
|
|---|
| 56 | opening angle $\cos \theta_{max} = 1/(\beta n(\epsilon_{max}))$. \\
|
|---|
| 57 |
|
|---|
| 58 | \noindent
|
|---|
| 59 | The average number of photons produced is given by the relations :
|
|---|
| 60 | \begin{eqnarray*}
|
|---|
| 61 | dN &=& \frac{\alpha z^{2}}{\hbar c}\sin^{2}\theta d\epsilon dx =
|
|---|
| 62 | \frac{\alpha z^{2}}{\hbar c}(1 - \frac{1}{n^{2}\beta^2}) d\epsilon dx
|
|---|
| 63 | \\
|
|---|
| 64 | & \approx & 370z^{2}
|
|---|
| 65 | \frac{photons}{eV\,cm}(1 - \frac{1}{n^{2}\beta^{2}})d\epsilon dx
|
|---|
| 66 | \end{eqnarray*}
|
|---|
| 67 | and the number of photons generated per track length is
|
|---|
| 68 | \begin{displaymath}
|
|---|
| 69 | \frac{dN}{dx} \approx 370z^{2} \int_{\epsilon_{min}}^{\epsilon_{max}}
|
|---|
| 70 | d\epsilon \left(1 - \frac{1}{n^{2}\beta^2} \right)
|
|---|
| 71 | = 370z^{2} \left \lbrack \epsilon_{max}
|
|---|
| 72 | - \epsilon_{min} - \frac{1}{\beta^{2}}
|
|---|
| 73 | \int_{\epsilon_{min}}^{\epsilon_{max}} \frac{d\epsilon}
|
|---|
| 74 | {n^2 (\epsilon)}\right \rbrack
|
|---|
| 75 | \end{displaymath} . \\
|
|---|
| 76 |
|
|---|
| 77 | \noindent
|
|---|
| 78 | The number of photons produced is calculated from a Poisson distribution with
|
|---|
| 79 | a mean of $\langle n \rangle = \mbox{StepLength}\ dN/dx$. The energy
|
|---|
| 80 | distribution of the photon is then sampled from the density function
|
|---|
| 81 | \begin{displaymath}
|
|---|
| 82 | f(\epsilon)=\left \lbrack 1 - \frac{1}{n^{2}(\epsilon)\beta^{2}} \right \rbrack
|
|---|
| 83 | \end{displaymath} .
|
|---|
| 84 |
|
|---|
| 85 | \subsection{Status of this document}
|
|---|
| 86 | 07.12.98 created by P.Gumplinger \\
|
|---|
| 87 | 11.12.01 SI units (mma) \\
|
|---|
| 88 | 08.05.02 re-written by D.H. Wright \\
|
|---|
| 89 |
|
|---|
| 90 | \begin{latexonly}
|
|---|
| 91 |
|
|---|
| 92 | \begin{thebibliography}{99}
|
|---|
| 93 | \bibitem{Jackson98}
|
|---|
| 94 | J.D.Jackson, Classical Electrodynamics, John Wiley and Sons (1998)
|
|---|
| 95 |
|
|---|
| 96 | \bibitem{pdg}
|
|---|
| 97 | D.E. Groom et al.
|
|---|
| 98 | Particle Data Group . Rev. of Particle Properties.
|
|---|
| 99 | Eur. Phys. J. C15,1 (2000) http://pdg.lbl.gov/
|
|---|
| 100 | \end{thebibliography}
|
|---|
| 101 |
|
|---|
| 102 | \end{latexonly}
|
|---|
| 103 |
|
|---|
| 104 | \begin{htmlonly}
|
|---|
| 105 |
|
|---|
| 106 | \subsection{Bibliography}
|
|---|
| 107 |
|
|---|
| 108 | \begin{enumerate}
|
|---|
| 109 | \item J.D.Jackson, Classical Electrodynamics, John Wiley and Sons (1998)
|
|---|
| 110 |
|
|---|
| 111 | \item D.E. Groom et al.
|
|---|
| 112 | Particle Data Group . Rev. of Particle Properties.
|
|---|
| 113 | Eur. Phys. J. C15,1 (2000) http://pdg.lbl.gov/
|
|---|
| 114 | \end{enumerate}
|
|---|
| 115 |
|
|---|
| 116 | \end{htmlonly}
|
|---|
| 117 |
|
|---|
| 118 |
|
|---|
| 119 |
|
|---|
| 120 |
|
|---|
| 121 |
|
|---|
| 122 |
|
|---|
| 123 |
|
|---|
| 124 |
|
|---|
| 125 |
|
|---|
| 126 |
|
|---|