source: trunk/documents/UserDoc/UsersGuides/PhysicsReferenceManual/latex/electromagnetic/xrays/xtr.tex @ 1292

Last change on this file since 1292 was 1208, checked in by garnier, 15 years ago

CVS update

File size: 16.1 KB
Line 
1\section[Transition radiation]{Transition radiation}
2
3\subsection{The Relationship of Transition Radiation to X-ray Cherenkov
4Radiation}
5X-ray transition radiation (XTR ) occurs when a relativistic charged
6particle passes from one medium to another of a different dielectric
7permittivity.  In order to describe this process it is useful to begin
8with an explanation of X-ray Cherenkov radiation, which is closely related.
9
10The mean number of X-ray Cherenkov radiation (XCR) photons of frequency
11$\omega$ emitted into an angle $\theta$ per unit distance along a particle
12trajectory is ~\cite{griCR}
13%
14\begin{equation}
15\label{Nxcr}
16\frac{d^3 \bar{N}_{xcr}}{\hbar d\omega\,dx\,d\theta^2}=
17\frac{\alpha}{\pi\hbar c}\frac{\omega}{c}\theta^2
18\textrm{Im}\left\{Z\right\}.
19\end{equation}
20%
21Here the quantity $Z$ is introduced as the {\em complex formation zone} of
22XCR in the medium:
23%
24\begin{equation}
25\label{Zj}
26Z=\frac{L}{1-i\displaystyle\frac{L}{l}},\quad L=\frac{c}{\omega}
27\left[\gamma^{-2}+\displaystyle\frac{\omega^2_p}{\omega^2}+\theta^2\right]^{-1},
28\quad \gamma^{-2}=1-\beta^2.
29\end{equation}
30%
31with $l$ and $\omega_p$ the photon absorption length and the plasma
32frequency, respectively, in the medium.  For the case of a transparent
33medium, $l \rightarrow \infty$ and the complex formation zone reduces to
34the {\em coherence length} $L$ of XCR.  The coherence length roughly
35corresponds to that part of the trajectory in which an XCR photon can be
36created.
37
38Introducing a complex quantity $Z$ with its imaginary part proportional to
39the absorption cross-section ($\sim l^{-1}$) is required in order to account
40for absorption in the medium.  Usually,
41$\omega_p^2/\omega^2 \gg c/\omega l$.  Then it can be seen from Eqs.
42\ref{Nxcr} and \ref{Zj} that the number of emitted XCR photons is
43considerably suppressed and disappears in the limit of a transparent
44medium.  This is caused by the destructive interference between the photons
45emitted from different parts of the particle trajectory.
46
47The destructive interference of X-ray Cherenkov radiation is removed if
48the particle crosses a boundary between two media with different
49dielectric permittivities, $\epsilon$, where
50%
51\begin{equation}
52\label{eps}
53\epsilon=1-\frac{\omega^2_p}{\omega^2}+
54i\frac{c}{\omega l}.
55\end{equation}
56%
57Here the standard high-frequency approximation for the dielectric
58permittivity has been used.  This is valid for energy transfers larger than
59the $K$-shell excitation potential.
60
61If layers of media are alternated with spacings of order $L$, the X-ray
62radiation yield from a trajectory of unit length can be increased by roughly
63$l/L$ times.  The radiation produced in this case is called X-ray transition
64radiation (XTR).
65
66\subsection{Calculating the X-ray Transition Radiation Yield}
67
68Using the methods developed in Ref. \cite{gri01} one can derive the relation
69describing the mean number of XTR photons generated per unit photon
70frequency and $\theta^2$ {\em inside} the radiator for a general XTR
71radiator consisting of $n$ different absorbing media with fluctuating
72thicknesses:
73%
74\begin{eqnarray}
75%\begin{equation}
76\label{Nin}
77&&\frac{d^2 \bar{N}_{in}}{\hbar d\omega\,d\theta^2}=
78\frac{\alpha}{\pi\hbar c^2}\omega\theta^2
79\textrm{Re}\left\{\sum_{i=1}^{n-1}(Z_{i}-Z_{i+1})^2+
80\right. \\ 
81&+&\left.
822\sum_{k=1}^{n-1}\,\sum_{i=1}^{k-1}(Z_{i}-Z_{i+1})\left[\prod_{j=i+1}^{k}F_{j}\right](Z_{k}-Z_{k+1})
83\right\},\,F_j=\exp\left[-\frac{t_j}{2Z_j}\right]. \nonumber
84%\end{equation}
85\end{eqnarray}
86%
87In the case of gamma distributed gap thicknesses (foam or fiber radiators) the values
88$F_j$, ($j=1,2$) can be estimated as:
89%
90\begin{equation}
91\label{Hj}
92F_j = \int_0^{\infty}dt_j\,
93\left(\frac{\nu_j}{\bar{t}_j}\right)^{\nu_j}
94\frac{t_j^{\nu_j - 1}}{\Gamma(\nu_j)}
95\exp\left[-\frac{\nu_j t_j}{\bar{t}_j}-\,i\frac{t_j}{2Z_j}\right]= \left[1 +
96\displaystyle i\frac{\bar{t}_j}{2Z_j\nu_j}\right]^{-\nu_j},
97\end{equation}
98%
99where $Z_j$ is the complex formation zone of XTR
100(similar to relation \ref{Zj} for XCR) in the $j$-th medium
101\cite{gri01,g4xtr}$\Gamma$ is the Euler gamma function, $\bar{t}_j$ is
102the mean thickness of the $j$-th medium in the radiator and $\nu_j > 0$ is
103the parameter roughly describing the relative fluctuations of $t_j$.  In
104fact, the relative fluctuation is $\delta t_j/\bar{t}_j\sim 1/\sqrt{\nu_j}$.
105
106In the particular case of $n$ foils of the first medium ($Z_1, F_1$)
107interspersed with gas gaps of the second medium ($Z_2, F_2$), one obtains:
108%
109\begin{equation}
110\label{Nn1}
111\frac{d^2 \bar{N}_{in}}{\hbar d\omega\,d\theta^2} =
112\frac{2\alpha}{\pi\hbar c^2}\omega\theta^2
113\textrm{Re}\left\{\langle R^{(n)}\rangle\right\},\quad F = F_1 F_2,
114\end{equation}
115%
116\begin{equation}
117\label{Rn}
118\langle R^{(n)}\rangle=(Z_1-Z_2)^2\left\{n\frac{(1-F_1)(1-F_2)}{1-F}+
119\frac{(1-F_1)^2F_2[1-F^n]}{(1-F)^2}\right\}.
120\end{equation} 
121%
122Here $\langle R^{(n)}\rangle$ is the stack factor reflecting the radiator geometry.
123The integration of (\ref{Nn1}) with respect to $\theta^2$ can be simplified for the
124case of a regular radiator ($\nu_{1,2}\rightarrow\infty$), transparent in terms
125of XTR generation media, and $n\gg 1$~\cite{gar71}. The frequency spectrum of
126emitted XTR photons is given by:
127%
128\begin{eqnarray}
129\label{Nntr}
130&&\frac{d \bar{N}_{in}}{\hbar d\omega}=
131\int_{0}^{\sim 10\gamma^{-2}}d\theta^2\frac{d^2 \bar{N}_{in}}{\hbar d\omega\,d\theta^2}=
132\frac{4\alpha n}{\pi\hbar\omega}(C_1+C_2)^2 \nonumber \\
133&&\cdot\sum_{k=k_{min}}^{k_{max}}
134\frac{(k-C_{min})}{(k-C_1)^2(k+C_2)^2}
135%\cdot \nonumber \\
136\sin^2\left[\frac{\pi t_1}{t_1+t_2}(k+C_2)\right],\nonumber \\
137\end{eqnarray}
138%
139%
140\[
141C_{1,2}=\frac{t_{1,2}(\omega^2_1-\omega^2_2)}{4\pi c\omega},\quad 
142C_{min}=\frac{1}{4\pi c}\left[\frac{\omega(t_1+t_2)}{\gamma^2}+
143\frac{t_1\omega^2_1+t_2\omega^2_2}{\omega}\right].
144\]
145The sum in (\ref{Nntr}) is defined by terms with $k\geq k_{min}$ corresponding
146to the region of $\theta\geq 0$. Therefore $k_{min}$ should be the nearest
147to $C_{min}$ integer $k_{min}\ge C_{min}$. The value of $k_{max}$ is defined by the
148maximum emission angle $\theta^2_{max}\sim 10\gamma^{-2}$. It can be evaluated as the
149integer part of
150\[
151C_{max}=C_{min}+\frac{\omega(t_1+t_2)}{4\pi c}\frac{10}{\gamma^2}, \quad 
152k_{max}-k_{min}\sim10^2\div 10^3\gg 1.
153\]
154Numerically, however, only a few tens of terms contribute substantially to the
155sum, that is, one can choose $k_{max}\sim k_{min}+20$. Equation (\ref{Nntr})
156corresponds to the spectrum of the total number of photons emitted inside a
157regular transparent radiator. Therefore the mean interaction length, $\lambda_{XTR}$,
158of the XTR process in this kind of radiator can be introduced as:
159\[
160\lambda_{XTR}=n(t_1+t_2)\left[\int_{\hbar\omega_{min}}^{\hbar\omega_{max}}
161\hbar d\omega\frac{d \bar{N}_{in}}{\hbar d\omega}\right]^{-1},
162\]
163where $\hbar\omega_{min}\sim 1$ keV, and $\hbar\omega_{max}\sim 100$ keV for the
164majority of high energy physics experiments. Its value is constant along
165the particle trajectory in the approximation of a transparent regular radiator.
166The spectrum of the total number of XTR photons {\em after} regular transparent
167radiator is defined by (\ref{Nntr}) with:
168\[
169n\rightarrow n_{eff}=\sum_{k=0}^{n-1}\exp[-k(\sigma_1t_1+\sigma_2t_2)]=
170\frac{1-\exp[-n(\sigma_1t_1+\sigma_2t_2)]}
171{1-\exp[-(\sigma_1t_1+\sigma_2t_2)]},
172\]
173where $\sigma_1$ and $\sigma_2$ are the photo-absorption cross-sections corresponding
174to the photon frequency $\omega$ in the first and the second medium, respectively.
175With this correction taken into account the XTR absorption in the
176radiator (\ref{Nntr}) corresponds to the results of \cite{fab75}. In the more
177general case of the flux of XTR photons {\em after} a radiator, the XTR absorption
178can be taken into account with a calculation based on the stack factor derived
179in \cite{gar74}:
180%
181\begin{eqnarray}
182\label{Rflux}
183\langle R^{(n)}_{flux}\rangle&=& (L_1-L_2)^2\left\{
184\frac{1-Q^n}{1-Q}\frac{(1 + Q_1)(1 + F) - 2F_1 - 2 Q_1 F_2}{2(1-F)}\right.\nonumber \\
185&+&\left.\frac{(1 - F_1 )(Q_1 - F_1)F_2 (Q^n -F^n)}{(1 - F)(Q - F)}
186\right\},
187\end{eqnarray}
188%
189%
190\[
191Q = Q_1\cdot Q_2, \quad Q_j=\exp\left[-t_j/l_j\right]=\exp\left[-\sigma_j t_j\right],\quad j=1,2.
192\]
193Both XTR energy loss (\ref{Rn}) and flux (\ref{Rflux}) models can be implemented
194as a discrete electromagnetic process (see below).
195
196
197\subsection{Simulating X-ray Transition Radiation Production}
198
199A typical XTR radiator consits of many ($\sim 100$) boundaries between different
200materials.  To improve the tracking performance in such a volume one can introduce
201an artificial material \cite{g4xtr}, which is the geometrical mixture of foil and
202gas contents.  Here is an example:
203\begin{verbatim}
204  // In DetectorConstruction of an application
205  // Preparation of mixed radiator material
206  foilGasRatio  = fRadThickness/(fRadThickness+fGasGap);
207  foilDensity  = 1.39*g/cm3;     // Mylar     
208  gasDensity   = 1.2928*mg/cm3 ; // Air 
209  totDensity   = foilDensity*foilGasRatio +
210                 gasDensity*(1.0-foilGasRatio);
211  fractionFoil =  foilDensity*foilGasRatio/totDensity;
212  fractionGas  =  gasDensity*(1.0-foilGasRatio)/totDensity;     
213  G4Material* radiatorMat = new G4Material("radiatorMat",
214                                            totDensity,
215                                            ncomponents = 2 );
216  radiatorMat->AddMaterial( Mylar, fractionFoil );
217  radiatorMat->AddMaterial( Air,   fractionGas  );
218  G4cout << *(G4Material::GetMaterialTable()) << G4endl; 
219  // materials of the TR radiator
220  fRadiatorMat = radiatorMat;   // artificial for geometry 
221  fFoilMat     = Mylar; 
222  fGasMat      = Air; 
223\end{verbatim}
224
225This artificial material will be assigned to the logical volume in which
226XTR will be generated:
227
228\begin{verbatim}
229  solidRadiator = new G4Box("Radiator",
230                             1.1*AbsorberRadius ,
231                             1.1*AbsorberRadius,
232                             0.5*radThick        );                         
233  logicRadiator = new G4LogicalVolume( solidRadiator,   
234                                       fRadiatorMat,  // !!!     
235                                      "Radiator");                                               
236  physiRadiator = new G4PVPlacement(0,
237                                     G4ThreeVector(0,0,zRad),           
238                                     "Radiator", logicRadiator,         
239                                     physiWorld, false, 0       );     
240\end{verbatim}
241
242XTR photons generated by a relativistic charged particle intersecting a
243radiator with $2n$ interfaces between different media can be simulated by
244using the following algorithm.  First the total number of XTR photons is
245estimated using a Poisson distribution about the mean number of photons
246given by the following expression:
247%
248%\begin{equation}
249%\label{Nn2}
250\[
251\bar{N}^{(n)}=\int_{\omega_1}^{\omega_2}d\omega
252\int_{0}^{\theta_{max}^2}d\theta^2
253\frac{d^2 \bar{N}^{(n)}}{d\omega\,d\theta^2}=
254%\nonumber\\&=&
255\frac{2\alpha}{\pi c^2}\int_{\omega_1}^{\omega_2}\omega d\omega
256\int_{0}^{\theta_{max}^2}\theta^2 d\theta^2 
257\textrm{Re}\left\{\langle R^{(n)}\rangle\right\}.
258\]
259%\end{equation}
260%
261Here $\theta_{max}^2\sim 10\gamma^{-2}$, $\hbar\omega_1\sim 1$~keV,
262$\hbar\omega_2\sim 100$~keV, and $\langle R^{(n)}\rangle$ correspond to the
263geometry of the experiment.  For events in which the number of XTR
264photons is not equal to zero, the energy and angle of each XTR quantum
265is sampled from the integral distributions obtained by the numerical
266integration of expression (\ref{Nn1}).  For example, the integral
267energy spectrum of emitted XTR photons, $\bar{N}^{(n)}_{>\omega}$, is defined
268from the following integral distribution:
269%
270%\begin{equation}
271%\label{Nomega}
272\[
273\bar{N}^{(n)}_{>\omega}=\frac{2\alpha}{\pi c^2}
274\int_{\omega}^{\omega_2}\omega d\omega
275\int_{0}^{\theta_{max}^2}\theta^2 d\theta^2 
276\textrm{Re}\left\{\langle R^{(n)}\rangle\right\}.
277\]
278%\end{equation}
279%
280In { \sc Geant4} XTR generation {\em inside} or {\em after} radiators is
281described as a discrete electromagnetic process. It is convenient for the
282description of tracks in magnetic fields and can be used for the cases when
283the radiating charge experiences a scattering inside the radiator. The base
284class {\tt G4VXTRenergyLoss} is responsible for the creation of tables with
285integral energy and angular distributions of XTR photons.  It also contains
286the {\tt PostDoIt} function providing XTR photon generation and motion
287(if fExitFlux=true) through a XTR radiator to its boundary.  Particular models
288like {\tt G4RegularXTRadiator} implement the pure virtual function
289{\tt GetStackFactor}, which calculates the response of the XTR radiator
290reflecting its geometry. Included below are some comments for the declaration
291of XTR in a user application.
292
293In the physics list one should pass to the XTR process additional
294details of the XTR radiator involved:
295
296\begin{verbatim}
297// In PhysicsList of an application
298else if (particleName == "e-")  // Construct processes for electron with XTR
299{
300   pmanager->AddProcess(new G4MultipleScattering, -1, 1,1 );
301   pmanager->AddProcess(new G4eBremsstrahlung(),  -1,-1,1 );
302   pmanager->AddProcess(new Em10StepCut(),        -1,-1,1 );
303// in regular radiators:             
304   pmanager->AddDiscreteProcess(               
305   new G4RegularXTRadiator        // XTR dEdx in general regular radiator
306// new G4XTRRegularRadModel        - XTR flux after general regular radiator
307// new G4TransparentRegXTRadiator  - XTR dEdx in transparent
308//                                   regular radiator
309// new G4XTRTransparentRegRadModel - XTR flux after transparent
310//                                   regular radiator
311                         (pDet->GetLogicalRadiator(), // XTR radiator
312
313                          pDet->GetFoilMaterial(), // real foil
314                          pDet->GetGasMaterial(),  // real gas
315                          pDet->GetFoilThick(),    // real geometry
316                          pDet->GetGasThick(),
317                          pDet->GetFoilNumber(),   
318                          "RegularXTRadiator"));
319// or for foam/fiber radiators:
320   pmanager->AddDiscreteProcess(               
321   new G4GammaXTRadiator    - XTR dEdx in general foam/fiber radiator
322// new G4XTRGammaRadModel   - XTR flux after general foam/fiber radiator
323                          ( pDet->GetLogicalRadiator(),
324                            1000.,
325                            100.,
326                            pDet->GetFoilMaterial(),
327                            pDet->GetGasMaterial(),
328                            pDet->GetFoilThick(),
329                            pDet->GetGasThick(),
330                            pDet->GetFoilNumber(),
331                            "GammaXTRadiator"));
332} 
333\end{verbatim}
334Here for the foam/fiber radiators the values 1000 and 100 are the $\nu$ parameters
335(which can be varied) of the Gamma distribution for the foil and gas gaps,
336respectively. Classes G4TransparentRegXTRadiator and G4XTRTransparentRegRadModel
337correspond (\ref{Nntr}) to $n$ and $n_{eff}$, respectively.
338 
339\subsection{Status of this document}
34018.11.05 modified by V.Grichine \\
34129.11.02 re-written by D.H. Wright \\
34229.05.02 created by V.Grichine \\
343
344\begin{latexonly}
345
346\begin{thebibliography}{99}
347
348\bibitem{griCR}  V.M. Grichine,
349{\em Nucl. Instr. and Meth.}, {\bf A482} (2002) 629.
350
351\bibitem{gri01} V.M. Grichine, {\em Physics Letters}, {\bf B525} (2002) 225-239
352
353\bibitem{gar71} G.M. Garibyan,
354{\em Sov. Phys. JETP} {\bf 32} (1971) 23.
355
356\bibitem{fab75} C.W. Fabian and W. Struczinski
357{\em Physics Letters}, {\bf B57 } (1975) 483.
358
359\bibitem{gar74} G.M. Garibian, L.A. Gevorgian, and C. Yang,
360{\em Sov. Phys.- JETP, 39 (1975) 265.}
361
362\bibitem{g4xtr} J. Apostolakis, S. Giani, V. Grichine et al.,
363{\em Comput. Phys. Commun.} {\bf 132} (2000) 241.
364
365\end{thebibliography}
366
367\end{latexonly}
368
369\begin{htmlonly}
370
371\subsection{Bibliography}
372
373\begin{enumerate}
374\item  V.M. Grichine,
375{\em Nucl. Instr. and Meth.}, {\bf A482} (2002) 629.
376
377\item V.M. Grichine, {\em Physics Letters}, {\bf B525} (2002) 225-239
378
379\item G.M. Garibyan,
380{\em Sov. Phys. JETP} {\bf 32} (1971) 23.
381
382\item C.W. Fabian and W. Struczinski
383{\em Physics Letters}, {\bf B57 } (1975) 483.
384
385\item G.M. Garibian, L.A. Gevorgian, and C. Yang,
386{\em Sov. Phys.- JETP, 39 (1975) 265.}
387
388\item J. Apostolakis, S. Giani, V. Grichine et al.,
389{\em Comput. Phys. Commun.} {\bf 132} (2000) 241.
390
391\end{enumerate}
392
393\end{htmlonly}
394
395
Note: See TracBrowser for help on using the repository browser.