| [1208] | 1 |
|
|---|
| 2 | \chapter[Monte Carlo Methods]
|
|---|
| 3 | {Monte Carlo Methods} \label{secmessel}
|
|---|
| 4 |
|
|---|
| 5 | The Geant4 toolkit uses a combination of the composition and
|
|---|
| 6 | rejection Monte Carlo methods. Only the basic formalism of these methods is
|
|---|
| 7 | outlined here. For a complete account of the Monte Carlo methods, the
|
|---|
| 8 | interested user is referred to the publications of Butcher and Messel,
|
|---|
| 9 | Messel and Crawford, or Ford and Nelson \cite{m.butch,m.messel,m.egs4}.
|
|---|
| 10 |
|
|---|
| 11 | \noindent
|
|---|
| 12 | Suppose we wish to sample $x$ in the interval $[x_1,\ x_2]$ from the
|
|---|
| 13 | distribution $f(x)$ and the {\it normalised} probability density function can
|
|---|
| 14 | be written as :
|
|---|
| 15 | \begin{equation}
|
|---|
| 16 | f(x) = \sum_{i=1}^{n} N_{i} f_{i} (x) g_{i} (x)
|
|---|
| 17 | \end{equation}
|
|---|
| 18 | where $N_i>0$, $f_i(x)$ are {\it normalised} density functions on $[x_1,\ x_2]$
|
|---|
| 19 | , and $0 \leq g_i (x) \leq 1$.
|
|---|
| 20 |
|
|---|
| 21 | \noindent
|
|---|
| 22 | According to this method, $x$ can sampled in the following way:
|
|---|
| 23 | \begin{enumerate}
|
|---|
| 24 | \item
|
|---|
| 25 | select a random integer $i \in \{1,2,\cdots n\}$
|
|---|
| 26 | with probability proportional to $N_i $
|
|---|
| 27 | \item
|
|---|
| 28 | select a value $x_0$ from the distribution $f_i (x)$
|
|---|
| 29 | \item
|
|---|
| 30 | calculate $g_i (x_0)$ and accept $x = x_0$ with probability $g_i (x_0)$;
|
|---|
| 31 | \item if $x_0$ is rejected restart from step 1.
|
|---|
| 32 | \end{enumerate}
|
|---|
| 33 | It can be shown that this scheme is correct and the mean
|
|---|
| 34 | number of tries to accept a value is $ \sum_{i} N_i $.
|
|---|
| 35 |
|
|---|
| 36 | \noindent
|
|---|
| 37 | In practice, a good method of sampling from the distribution $f(x)$ has the
|
|---|
| 38 | following properties:
|
|---|
| 39 | \begin{itemize}
|
|---|
| 40 | \item all the subdistributions $ f_i (x)$ can be sampled easily;
|
|---|
| 41 | \item the rejection functions $ g_i(x)$ can be evaluated easily/quickly;
|
|---|
| 42 | \item the mean number of tries is not too large.
|
|---|
| 43 | \end{itemize}
|
|---|
| 44 | Thus the different possible decompositions of the distribution
|
|---|
| 45 | $f(x)$ are not equivalent from the practical point of view (e.g. they
|
|---|
| 46 | can be very different in computational speed) and it can be useful
|
|---|
| 47 | to optimise the decomposition.
|
|---|
| 48 |
|
|---|
| 49 | \noindent
|
|---|
| 50 | A remark of practical importance : if our distribution is not
|
|---|
| 51 | normalised
|
|---|
| 52 | $$\int_{x_1}^{x_2} f(x)dx = C > 0$$
|
|---|
| 53 | the method can be used in the same
|
|---|
| 54 | manner; the mean number of tries in this
|
|---|
| 55 | case is $\sum_ {i} N_i/C$.
|
|---|
| 56 |
|
|---|
| 57 | \section{Status of this document}
|
|---|
| 58 | 18.01.02 created by M.Maire. \\
|
|---|
| 59 |
|
|---|
| 60 | \begin{latexonly}
|
|---|
| 61 |
|
|---|
| 62 | \begin{thebibliography}{99}
|
|---|
| 63 | \bibitem{m.butch} J.C. Butcher and H. Messel.
|
|---|
| 64 | {\em Nucl. Phys. 20} 15 (1960)
|
|---|
| 65 | \bibitem{m.messel} H. Messel and D. Crawford.
|
|---|
| 66 | {\em Electron-Photon shower distribution, Pergamon Press} (1970)
|
|---|
| 67 | \bibitem{m.egs4} R. Ford and W. Nelson.
|
|---|
| 68 | {\em SLAC-265, UC-32} (1985)
|
|---|
| 69 | \bibitem{m.pdg}
|
|---|
| 70 | Particle Data Group. Rev. of Particle Properties.
|
|---|
| 71 | {\em Eur. Phys. J. C15. (2000) 1.} http://pdg.lbl.gov
|
|---|
| 72 | \end{thebibliography}
|
|---|
| 73 |
|
|---|
| 74 | \end{latexonly}
|
|---|
| 75 |
|
|---|
| 76 | \begin{htmlonly}
|
|---|
| 77 |
|
|---|
| 78 | \section{Bibliography}
|
|---|
| 79 |
|
|---|
| 80 | \begin{enumerate}
|
|---|
| 81 | \item J.C. Butcher and H. Messel {\em Nucl. Phys. 20} 15 (1960).
|
|---|
| 82 | \item H. Messel and D. Crawford {\em Electron-Photon shower distribution, Pergamon Press} (1970).
|
|---|
| 83 | \item R. Ford and W. Nelson {\em SLAC-265, UC-32} (1985).
|
|---|
| 84 | \item Particle Data Group. Rev. of Particle Properties {\em Eur. Phys. J. C15. (2000) 1.} http://pdg.lbl.gov .
|
|---|
| 85 | \end{enumerate}
|
|---|
| 86 |
|
|---|
| 87 | \end{htmlonly} |
|---|