source: trunk/documents/UserDoc/UsersGuides/PhysicsReferenceManual/latex/hadronic/elastic/diffuselastic.tex @ 1211

Last change on this file since 1211 was 1208, checked in by garnier, 15 years ago

CVS update

File size: 8.3 KB
Line 
1\chapter{Optical Elastic Model}
2
3\section{ The model description  }
4
5This model is based on the optical approach in which a nucleus is considered to be a drop of
6an absorptive and refractive medium.  Absorption results in the diffraction of a projectile
7hadron, while refraction (scattering) in the surface layer provides some smoothing of the
8diffraction picture. The differential cross section in the center mass system can be written
9 \cite{bethe40,ap45,bs98}:
10\[
11\frac{d\sigma_{el}}{d\Omega}= R^2F_d^2(k\,d\,\theta)
12\left\{\frac{J_1^2(k\,R\,\theta)}{\theta^2}+
13\left[(\gamma\,k)^2+
14(\delta\,k^2\,\theta)^2\right]J_0^2(k\,R\,\theta)\right\},
15\quad d\Omega=2\pi\sin\theta\,d\theta,
16\]
17where $J_k$ is the Bessel function of k-th order ($k = 0,1$) and $\Omega$ and $\theta$ are
18the solid and polar scattering angles, respectively.
19$R$ and $d$ are nuclear geometrical parameters of the Woods-Saxon density form
20\[
21\rho(r)=\rho_o\left\{1+\displaystyle\exp\left[\frac{(r-R)}{d}\right]\right\}^{-1},
22\]
23in which $k$ is the projectile wave vector ($k=p/\hbar\,c$, $p$ is the projectile
24momentum multiplied by $c$), and $F_d$ is the dumping factor:
25\[
26F_d(k\,d\,\theta)=\frac{\pi\,k\,d\,\theta}{\sinh(\pi\,k\,d\,\theta)}.
27\]
28$\gamma$ is the refraction (nuclear scattering) parameter, and $\delta$ is the
29spin-orbital interaction parameter.
30
31The model can be modified for charged particles by taking into account that a simple
32summation of nuclear and Coulomb cross sections does not work.  However for small Coulomb
33scattering 
34$\delta f_{Coulomb}(\theta)\ll f_{nuclear}(\theta)$ the amplitudes can be summarized:
35\[
36\frac{d\sigma_{el}}{d\Omega} = | \delta f_{Coulomb}(\theta)+f_{nuclear}(\theta)|^2.
37\]
38This case is assumed in the diffuse optical model considered, where we should correct the
39nuclear refraction (scattering) term:
40\[
41\gamma\,k \rightarrow \gamma\,k + \frac{n}{2kR}\left[\sin^2(\frac{\theta}{2}) + A_m \right]^{-1},
42\quad n = \frac{\alpha Z_1  Z_2}{\beta} \ll kR,
43\]
44where $n$ is Zommerfeld parameter for the Coulomb field, $\beta=v/c$ is the particle velocity,
45and $Z_1$ and $Z_2$ are the hadron and nucleus charges, respectively.
46The parameter $A_m$ reflects Coulomb atomic shell screening and can be estimated as:
47\[
48A_m = \frac{1.13 + 3.76n^2}{(1.77ka_oZ^{-1/3})^2},
49\]
50where $a_o$ is the Bohr radius, and $Z$ is the atomic number.
51
52This method corresponds to elastic Coulomb-Wentzel scattering recently implemented
53in electromagnetic physics \cite{fer93}:
54\[
55\frac{d\sigma_{el}^{cw}}{d\Omega}= \frac{n^2}{4k^2}
56\left[\sin^2(\frac{\theta}{2}) + A_m \right]^{-2}, \quad V(r)=\frac{e^2Z_1Z_2}{r^2}\exp(-r/R),
57\quad A_m = (2kR)^{-2}.
58\]
59The Coulomb-Wentzel cross-section reads:
60\[
61\sigma_{el}^{cw}= \frac{n^2}{k^2}\frac{\pi}{A_m(1+A_m)}, \quad 
62\sigma_{el}^{cw}(\theta_1,\theta_2)=2\pi\frac{n^2}{k^2}\frac{\cos\theta_1-\cos\theta_2}
63{(1-\cos\theta_1+2A_m)(1-\cos\theta_2+2A_m)}.
64\]
65This cross-section is much bigger than the integral nuclear cross section.  However the
66main contribution comes from very small angles where the differential nuclear elastic
67cross section is approximately constant. In this region the Coulomb correction can be
68switched off. This avoids double counting of Coulomb scattering in electromagnetic and nuclear
69processes.
70
71\section{Validation}
72
73
74Figs. \ref{pPb1GeV}-\ref{pipC9p92GeVc} show the elastic differential cross sections of protons
75and pions with energies in the range 1 - 301 GeV on different targets: helium, carbon, silicon
76and lead.
77One can see that Coulomb corrections improve the description of differential cross sections
78in the regions of the minima.
79
80\begin{figure*}
81\centering \includegraphics[width=10cm,height=7cm]{hadronic/elastic/pPbsumT1GeV.eps}
82\vspace{-0.5cm}
83\caption{ Differential elastic scattering cross sections of protons with energy
841 GeV on lead. Curves show pure nuclear and Coulomb-corrected models. Points are
85experimental data. The Coulomb cross section dominates at small angles resulting
86in a large integral cross section: $\sigma_{el}^{nucl}=1210$ mb, with $\lambda = 25$ cm,
87$\sigma_{el}^{cw}(2^{0}, 16^{o})=642.65$ mb, with $\lambda = 47$ cm,
88$\sigma_{el}^{cw}(0,1^o)\sim \sigma_{el}^{cw} = 2.36423\cdot10^{9}$ mb,
89with $\lambda = 0.13$ micron.}
90\label{pPb1GeV}
91\end{figure*}
92
93\begin{figure*}
94\centering \includegraphics[width=10cm,height=7cm]{hadronic/elastic/pSisumT1GeV.eps}
95\vspace{-0.5cm}
96\caption{ Differential elastic scattering cross sections of protons with energy
971 GeV on silicon. Curves show pure nuclear and Coulomb-corrected models. Points are
98experimental data. The Coulomb cross section dominates at small angles resulting in
99a large integral cross-section:
100$\sigma_{el}^{cw}(0,1^o)\sim \sigma_{el}^{cw}=5.46779\cdot10^{8}$ mb,
101with $\lambda = 0.366068$ micron.}
102\label{pSi1GeV}
103\end{figure*}
104
105\begin{figure*}
106\centering \includegraphics[width=10cm,height=7cm]{hadronic/elastic/pPbsum9p92GeVc.eps}
107\vspace{-0.5cm}
108\caption{ Differential elastic scattering cross sections of protons with momentum
1099.92 GeV/c on lead. Curves show pure nuclear and Coulomb-corrected models. Points are
110experimental data. The Coulomb cross section dominates at small angles resulting in a
111large integral cross section
112$\sigma_{el}^{cw}(0,4 \ mrad)\sim \sigma_{el}^{cw}=2.11854\cdot10^{9}$ mb,
113with $\lambda = 0.143101$ micron.
114$\sigma_{el}^{cw}(4  \ mrad,40 \ mrad)=919.547$ mb,
115with $\lambda = 329689$ micron (33 cm).}
116\label{pPb9p92GeVc}
117\end{figure*}
118
119\begin{figure*}
120\centering \includegraphics[width=10cm,height=7cm]{hadronic/elastic/pHeT45GeVsum.eps}
121\vspace{-0.5cm}
122\caption{ Differential elastic scattering cross sections of protons with energy
12345 GeV on helium. Curves show pure nuclear and Coulomb-corrected models. Points are
124experimental data.}
125\label{pHe45GeV}
126\end{figure*}
127
128\begin{figure*}
129\centering \includegraphics[width=10cm,height=7cm]{hadronic/elastic/pHeT301GeVsum.eps}
130\vspace{-0.5cm}
131\caption{ Differential elastic scattering cross sections of protons with energy
132301 GeV on helium. Curves show pure nuclear and Coulomb-corrected models. Points are
133experimental data.}
134\label{pHe301GeV}
135\end{figure*}
136
137\begin{figure*}
138\centering \includegraphics[width=10cm,height=7cm]{hadronic/elastic/pimPbsum9p92GeVc.eps}
139\vspace{-0.5cm}
140\caption{ Differential elastic scattering cross sections of $\pi^{-}$ with momentum
1419.92 GeV/c on lead. Curves show pure nuclear and Coulomb-corrected models. Points are
142experimental data. }
143\label{pimPb9p92GeVc}
144\end{figure*}
145
146\begin{figure*}
147\centering \includegraphics[width=10cm,height=7cm]{hadronic/elastic/pipPbsum9p92GeVc.eps}
148\vspace{-0.5cm}
149\caption{ Differential elastic scattering cross sections of $\pi^{+}$ with momentum
1509.92 GeV/c on lead. Curves show pure nuclear and Coulomb-corrected models. Points are
151experimental data.}
152\label{pipPb9p92GeVc}
153\end{figure*}
154
155\begin{figure*}
156\centering \includegraphics[width=10cm,height=7cm]{hadronic/elastic/pipCsum9p92GeVc.eps}
157\vspace{-0.5cm}
158\caption{ Differential elastic scattering cross sections of $\pi^{+}$ with momentum
1599.92 GeV/c on carbon. Curves show pure nuclear and Coulomb-corrected models. Points are
160experimental data.}
161\label{pipC9p92GeVc}
162\end{figure*}
163
164\section{Implementation} 
165
166This model is implemented in the class {\em G4DiffuseElastic}. It conforms to the general
167interface of hadronic models and performs initialization for different elements during
168tracking.
169
170
171\section{Status of this document}
17218.11.07 created by V. Grichine \\
173
174
175
176\begin{latexonly}
177
178\begin{thebibliography}{99}
179
180\bibitem{bethe40} P. Placzec, H.A. Bethe, {\em Phys. Rev.}, {\bf 57} (1940) 1075A.
181
182\bibitem{ap45} A. Akhiezer, I. Pomeranchuk, {\em J. Phys. (USSR)}, {\bf 9} (1945) 471;
183{\em Sov. Phys. USPEKHI}, {\bf 65} (1958) 593.
184
185\bibitem{bs98} Yu.A. Berezhnoy, V.A. Slipko, {\em Int. J. of Mod. Phys.}, {\bf E7} (1998) 723.
186
187\bibitem{fer93} J.M. Fernandez-Varea, R. Moyol, J. Baro, F. Salvat,
188{\em Nucl. Instr. and Math. in Phys. Res.}, {\bf B73} (1993) 447.
189
190
191\end{thebibliography}
192
193\end{latexonly}
194
195\begin{htmlonly}
196
197\section{Bibliography}
198
199\begin{enumerate}
200
201\item P. Placzec, H.A. Bethe, {\em Phys. Rev.}, {\bf 57} (1940) 1075A.
202
203
204\item A. Akhiezer, I. Pomeranchuk, {\em J. Phys. (USSR)}, {\bf 9} (1945) 471;
205{\em Sov. Phys. USPEKHI}, {\bf 65} (1958) 593.
206
207\item Yu.A. Berezhnoy, V.A. Slipko, {\em Int. J. of Mod. Phys.}, {\bf E7} (1998) 723.
208
209\item J.M. Fernandez-Varea, R. Moyol, J. Baro, F. Salvat,
210{\em Nucl. Instr. and Math. in Phys. Res.}, {\bf B73} (1993) 447.
211
212
213\end{enumerate}
214
215\end{htmlonly}
216
Note: See TracBrowser for help on using the repository browser.