| 1 | \chapter{Optical Elastic Model}
|
|---|
| 2 |
|
|---|
| 3 | \section{ The model description }
|
|---|
| 4 |
|
|---|
| 5 | This model is based on the optical approach in which a nucleus is considered to be a drop of
|
|---|
| 6 | an absorptive and refractive medium. Absorption results in the diffraction of a projectile
|
|---|
| 7 | hadron, while refraction (scattering) in the surface layer provides some smoothing of the
|
|---|
| 8 | diffraction picture. The differential cross section in the center mass system can be written
|
|---|
| 9 | \cite{bethe40,ap45,bs98}:
|
|---|
| 10 | \[
|
|---|
| 11 | \frac{d\sigma_{el}}{d\Omega}= R^2F_d^2(k\,d\,\theta)
|
|---|
| 12 | \left\{\frac{J_1^2(k\,R\,\theta)}{\theta^2}+
|
|---|
| 13 | \left[(\gamma\,k)^2+
|
|---|
| 14 | (\delta\,k^2\,\theta)^2\right]J_0^2(k\,R\,\theta)\right\},
|
|---|
| 15 | \quad d\Omega=2\pi\sin\theta\,d\theta,
|
|---|
| 16 | \]
|
|---|
| 17 | where $J_k$ is the Bessel function of k-th order ($k = 0,1$) and $\Omega$ and $\theta$ are
|
|---|
| 18 | the solid and polar scattering angles, respectively.
|
|---|
| 19 | $R$ and $d$ are nuclear geometrical parameters of the Woods-Saxon density form
|
|---|
| 20 | \[
|
|---|
| 21 | \rho(r)=\rho_o\left\{1+\displaystyle\exp\left[\frac{(r-R)}{d}\right]\right\}^{-1},
|
|---|
| 22 | \]
|
|---|
| 23 | in which $k$ is the projectile wave vector ($k=p/\hbar\,c$, $p$ is the projectile
|
|---|
| 24 | momentum multiplied by $c$), and $F_d$ is the dumping factor:
|
|---|
| 25 | \[
|
|---|
| 26 | F_d(k\,d\,\theta)=\frac{\pi\,k\,d\,\theta}{\sinh(\pi\,k\,d\,\theta)}.
|
|---|
| 27 | \]
|
|---|
| 28 | $\gamma$ is the refraction (nuclear scattering) parameter, and $\delta$ is the
|
|---|
| 29 | spin-orbital interaction parameter.
|
|---|
| 30 |
|
|---|
| 31 | The model can be modified for charged particles by taking into account that a simple
|
|---|
| 32 | summation of nuclear and Coulomb cross sections does not work. However for small Coulomb
|
|---|
| 33 | scattering
|
|---|
| 34 | $\delta f_{Coulomb}(\theta)\ll f_{nuclear}(\theta)$ the amplitudes can be summarized:
|
|---|
| 35 | \[
|
|---|
| 36 | \frac{d\sigma_{el}}{d\Omega} = | \delta f_{Coulomb}(\theta)+f_{nuclear}(\theta)|^2.
|
|---|
| 37 | \]
|
|---|
| 38 | This case is assumed in the diffuse optical model considered, where we should correct the
|
|---|
| 39 | nuclear refraction (scattering) term:
|
|---|
| 40 | \[
|
|---|
| 41 | \gamma\,k \rightarrow \gamma\,k + \frac{n}{2kR}\left[\sin^2(\frac{\theta}{2}) + A_m \right]^{-1},
|
|---|
| 42 | \quad n = \frac{\alpha Z_1 Z_2}{\beta} \ll kR,
|
|---|
| 43 | \]
|
|---|
| 44 | where $n$ is Zommerfeld parameter for the Coulomb field, $\beta=v/c$ is the particle velocity,
|
|---|
| 45 | and $Z_1$ and $Z_2$ are the hadron and nucleus charges, respectively.
|
|---|
| 46 | The parameter $A_m$ reflects Coulomb atomic shell screening and can be estimated as:
|
|---|
| 47 | \[
|
|---|
| 48 | A_m = \frac{1.13 + 3.76n^2}{(1.77ka_oZ^{-1/3})^2},
|
|---|
| 49 | \]
|
|---|
| 50 | where $a_o$ is the Bohr radius, and $Z$ is the atomic number.
|
|---|
| 51 |
|
|---|
| 52 | This method corresponds to elastic Coulomb-Wentzel scattering recently implemented
|
|---|
| 53 | in electromagnetic physics \cite{fer93}:
|
|---|
| 54 | \[
|
|---|
| 55 | \frac{d\sigma_{el}^{cw}}{d\Omega}= \frac{n^2}{4k^2}
|
|---|
| 56 | \left[\sin^2(\frac{\theta}{2}) + A_m \right]^{-2}, \quad V(r)=\frac{e^2Z_1Z_2}{r^2}\exp(-r/R),
|
|---|
| 57 | \quad A_m = (2kR)^{-2}.
|
|---|
| 58 | \]
|
|---|
| 59 | The Coulomb-Wentzel cross-section reads:
|
|---|
| 60 | \[
|
|---|
| 61 | \sigma_{el}^{cw}= \frac{n^2}{k^2}\frac{\pi}{A_m(1+A_m)}, \quad
|
|---|
| 62 | \sigma_{el}^{cw}(\theta_1,\theta_2)=2\pi\frac{n^2}{k^2}\frac{\cos\theta_1-\cos\theta_2}
|
|---|
| 63 | {(1-\cos\theta_1+2A_m)(1-\cos\theta_2+2A_m)}.
|
|---|
| 64 | \]
|
|---|
| 65 | This cross-section is much bigger than the integral nuclear cross section. However the
|
|---|
| 66 | main contribution comes from very small angles where the differential nuclear elastic
|
|---|
| 67 | cross section is approximately constant. In this region the Coulomb correction can be
|
|---|
| 68 | switched off. This avoids double counting of Coulomb scattering in electromagnetic and nuclear
|
|---|
| 69 | processes.
|
|---|
| 70 |
|
|---|
| 71 | \section{Validation}
|
|---|
| 72 |
|
|---|
| 73 |
|
|---|
| 74 | Figs. \ref{pPb1GeV}-\ref{pipC9p92GeVc} show the elastic differential cross sections of protons
|
|---|
| 75 | and pions with energies in the range 1 - 301 GeV on different targets: helium, carbon, silicon
|
|---|
| 76 | and lead.
|
|---|
| 77 | One can see that Coulomb corrections improve the description of differential cross sections
|
|---|
| 78 | in the regions of the minima.
|
|---|
| 79 |
|
|---|
| 80 | \begin{figure*}
|
|---|
| 81 | \centering \includegraphics[width=10cm,height=7cm]{hadronic/elastic/pPbsumT1GeV.eps}
|
|---|
| 82 | \vspace{-0.5cm}
|
|---|
| 83 | \caption{ Differential elastic scattering cross sections of protons with energy
|
|---|
| 84 | 1 GeV on lead. Curves show pure nuclear and Coulomb-corrected models. Points are
|
|---|
| 85 | experimental data. The Coulomb cross section dominates at small angles resulting
|
|---|
| 86 | in a large integral cross section: $\sigma_{el}^{nucl}=1210$ mb, with $\lambda = 25$ cm,
|
|---|
| 87 | $\sigma_{el}^{cw}(2^{0}, 16^{o})=642.65$ mb, with $\lambda = 47$ cm,
|
|---|
| 88 | $\sigma_{el}^{cw}(0,1^o)\sim \sigma_{el}^{cw} = 2.36423\cdot10^{9}$ mb,
|
|---|
| 89 | with $\lambda = 0.13$ micron.}
|
|---|
| 90 | \label{pPb1GeV}
|
|---|
| 91 | \end{figure*}
|
|---|
| 92 |
|
|---|
| 93 | \begin{figure*}
|
|---|
| 94 | \centering \includegraphics[width=10cm,height=7cm]{hadronic/elastic/pSisumT1GeV.eps}
|
|---|
| 95 | \vspace{-0.5cm}
|
|---|
| 96 | \caption{ Differential elastic scattering cross sections of protons with energy
|
|---|
| 97 | 1 GeV on silicon. Curves show pure nuclear and Coulomb-corrected models. Points are
|
|---|
| 98 | experimental data. The Coulomb cross section dominates at small angles resulting in
|
|---|
| 99 | a large integral cross-section:
|
|---|
| 100 | $\sigma_{el}^{cw}(0,1^o)\sim \sigma_{el}^{cw}=5.46779\cdot10^{8}$ mb,
|
|---|
| 101 | with $\lambda = 0.366068$ micron.}
|
|---|
| 102 | \label{pSi1GeV}
|
|---|
| 103 | \end{figure*}
|
|---|
| 104 |
|
|---|
| 105 | \begin{figure*}
|
|---|
| 106 | \centering \includegraphics[width=10cm,height=7cm]{hadronic/elastic/pPbsum9p92GeVc.eps}
|
|---|
| 107 | \vspace{-0.5cm}
|
|---|
| 108 | \caption{ Differential elastic scattering cross sections of protons with momentum
|
|---|
| 109 | 9.92 GeV/c on lead. Curves show pure nuclear and Coulomb-corrected models. Points are
|
|---|
| 110 | experimental data. The Coulomb cross section dominates at small angles resulting in a
|
|---|
| 111 | large integral cross section
|
|---|
| 112 | $\sigma_{el}^{cw}(0,4 \ mrad)\sim \sigma_{el}^{cw}=2.11854\cdot10^{9}$ mb,
|
|---|
| 113 | with $\lambda = 0.143101$ micron.
|
|---|
| 114 | $\sigma_{el}^{cw}(4 \ mrad,40 \ mrad)=919.547$ mb,
|
|---|
| 115 | with $\lambda = 329689$ micron (33 cm).}
|
|---|
| 116 | \label{pPb9p92GeVc}
|
|---|
| 117 | \end{figure*}
|
|---|
| 118 |
|
|---|
| 119 | \begin{figure*}
|
|---|
| 120 | \centering \includegraphics[width=10cm,height=7cm]{hadronic/elastic/pHeT45GeVsum.eps}
|
|---|
| 121 | \vspace{-0.5cm}
|
|---|
| 122 | \caption{ Differential elastic scattering cross sections of protons with energy
|
|---|
| 123 | 45 GeV on helium. Curves show pure nuclear and Coulomb-corrected models. Points are
|
|---|
| 124 | experimental data.}
|
|---|
| 125 | \label{pHe45GeV}
|
|---|
| 126 | \end{figure*}
|
|---|
| 127 |
|
|---|
| 128 | \begin{figure*}
|
|---|
| 129 | \centering \includegraphics[width=10cm,height=7cm]{hadronic/elastic/pHeT301GeVsum.eps}
|
|---|
| 130 | \vspace{-0.5cm}
|
|---|
| 131 | \caption{ Differential elastic scattering cross sections of protons with energy
|
|---|
| 132 | 301 GeV on helium. Curves show pure nuclear and Coulomb-corrected models. Points are
|
|---|
| 133 | experimental data.}
|
|---|
| 134 | \label{pHe301GeV}
|
|---|
| 135 | \end{figure*}
|
|---|
| 136 |
|
|---|
| 137 | \begin{figure*}
|
|---|
| 138 | \centering \includegraphics[width=10cm,height=7cm]{hadronic/elastic/pimPbsum9p92GeVc.eps}
|
|---|
| 139 | \vspace{-0.5cm}
|
|---|
| 140 | \caption{ Differential elastic scattering cross sections of $\pi^{-}$ with momentum
|
|---|
| 141 | 9.92 GeV/c on lead. Curves show pure nuclear and Coulomb-corrected models. Points are
|
|---|
| 142 | experimental data. }
|
|---|
| 143 | \label{pimPb9p92GeVc}
|
|---|
| 144 | \end{figure*}
|
|---|
| 145 |
|
|---|
| 146 | \begin{figure*}
|
|---|
| 147 | \centering \includegraphics[width=10cm,height=7cm]{hadronic/elastic/pipPbsum9p92GeVc.eps}
|
|---|
| 148 | \vspace{-0.5cm}
|
|---|
| 149 | \caption{ Differential elastic scattering cross sections of $\pi^{+}$ with momentum
|
|---|
| 150 | 9.92 GeV/c on lead. Curves show pure nuclear and Coulomb-corrected models. Points are
|
|---|
| 151 | experimental data.}
|
|---|
| 152 | \label{pipPb9p92GeVc}
|
|---|
| 153 | \end{figure*}
|
|---|
| 154 |
|
|---|
| 155 | \begin{figure*}
|
|---|
| 156 | \centering \includegraphics[width=10cm,height=7cm]{hadronic/elastic/pipCsum9p92GeVc.eps}
|
|---|
| 157 | \vspace{-0.5cm}
|
|---|
| 158 | \caption{ Differential elastic scattering cross sections of $\pi^{+}$ with momentum
|
|---|
| 159 | 9.92 GeV/c on carbon. Curves show pure nuclear and Coulomb-corrected models. Points are
|
|---|
| 160 | experimental data.}
|
|---|
| 161 | \label{pipC9p92GeVc}
|
|---|
| 162 | \end{figure*}
|
|---|
| 163 |
|
|---|
| 164 | \section{Implementation}
|
|---|
| 165 |
|
|---|
| 166 | This model is implemented in the class {\em G4DiffuseElastic}. It conforms to the general
|
|---|
| 167 | interface of hadronic models and performs initialization for different elements during
|
|---|
| 168 | tracking.
|
|---|
| 169 |
|
|---|
| 170 |
|
|---|
| 171 | \section{Status of this document}
|
|---|
| 172 | 18.11.07 created by V. Grichine \\
|
|---|
| 173 |
|
|---|
| 174 |
|
|---|
| 175 |
|
|---|
| 176 | \begin{latexonly}
|
|---|
| 177 |
|
|---|
| 178 | \begin{thebibliography}{99}
|
|---|
| 179 |
|
|---|
| 180 | \bibitem{bethe40} P. Placzec, H.A. Bethe, {\em Phys. Rev.}, {\bf 57} (1940) 1075A.
|
|---|
| 181 |
|
|---|
| 182 | \bibitem{ap45} A. Akhiezer, I. Pomeranchuk, {\em J. Phys. (USSR)}, {\bf 9} (1945) 471;
|
|---|
| 183 | {\em Sov. Phys. USPEKHI}, {\bf 65} (1958) 593.
|
|---|
| 184 |
|
|---|
| 185 | \bibitem{bs98} Yu.A. Berezhnoy, V.A. Slipko, {\em Int. J. of Mod. Phys.}, {\bf E7} (1998) 723.
|
|---|
| 186 |
|
|---|
| 187 | \bibitem{fer93} J.M. Fernandez-Varea, R. Moyol, J. Baro, F. Salvat,
|
|---|
| 188 | {\em Nucl. Instr. and Math. in Phys. Res.}, {\bf B73} (1993) 447.
|
|---|
| 189 |
|
|---|
| 190 |
|
|---|
| 191 | \end{thebibliography}
|
|---|
| 192 |
|
|---|
| 193 | \end{latexonly}
|
|---|
| 194 |
|
|---|
| 195 | \begin{htmlonly}
|
|---|
| 196 |
|
|---|
| 197 | \section{Bibliography}
|
|---|
| 198 |
|
|---|
| 199 | \begin{enumerate}
|
|---|
| 200 |
|
|---|
| 201 | \item P. Placzec, H.A. Bethe, {\em Phys. Rev.}, {\bf 57} (1940) 1075A.
|
|---|
| 202 |
|
|---|
| 203 |
|
|---|
| 204 | \item A. Akhiezer, I. Pomeranchuk, {\em J. Phys. (USSR)}, {\bf 9} (1945) 471;
|
|---|
| 205 | {\em Sov. Phys. USPEKHI}, {\bf 65} (1958) 593.
|
|---|
| 206 |
|
|---|
| 207 | \item Yu.A. Berezhnoy, V.A. Slipko, {\em Int. J. of Mod. Phys.}, {\bf E7} (1998) 723.
|
|---|
| 208 |
|
|---|
| 209 | \item J.M. Fernandez-Varea, R. Moyol, J. Baro, F. Salvat,
|
|---|
| 210 | {\em Nucl. Instr. and Math. in Phys. Res.}, {\bf B73} (1993) 447.
|
|---|
| 211 |
|
|---|
| 212 |
|
|---|
| 213 | \end{enumerate}
|
|---|
| 214 |
|
|---|
| 215 | \end{htmlonly}
|
|---|
| 216 |
|
|---|