source: trunk/documents/UserDoc/UsersGuides/PhysicsReferenceManual/latex/hadronic/theory_driven/AbrasionAblation/AbrasionAblation.tex

Last change on this file was 1208, checked in by garnier, 15 years ago

CVS update

File size: 22.0 KB
Line 
1
2\chapter{Abrasion-ablation Model}
3
4\section{Introduction}
5\label{Intro}
6The abrasion model is a simplified macroscopic model for nuclear-nuclear
7interactions based largely on geometric arguments rather than detailed
8consideration of nucleon-nucleon collisions.  As such the speed of the
9simulation is found to be faster than models such as G4BinaryCascade,
10but at the cost of accuracy.  The version of the model implemented is
11interpreted from the so-called abrasion-ablation model described by Wilson
12{\normalsize\it{}et al} \cite{aaWilson},\cite{aaTownsend} together with an
13algorithm from Cucinotta to approximate the secondary nucleon energy
14spectrum \cite{aaCucinotta}.  By default, instead of performing an ablation
15process to simulate the de-excitation of the nuclear pre-fragments, the Geant4
16implementation of the abrasion model makes use of existing and more detailed
17nuclear de-excitation models within Geant4 (G4Evaporation, G4FermiBreakup,
18G4StatMF) to perform this function (see section \ref{deexcitation}).  However,
19in some cases cross sections for the production of fragments with large
20$\Delta$A from the pre-abrasion nucleus are more accurately determined using a
21Geant4 implementation of the ablation model (see section \ref{ablation}).
22
23
24\noindent The abrasion interaction is the initial fast process in which the
25overlap region between the projectile and target nuclei is sheered-off (see
26figure \ref{fig:1})  The spectator nucleons in the projectile are assumed to
27undergo little change in momentum, and likewise for the spectators in the
28target nucleus.  Some of the nucleons in the overlap region do suffer a change
29in momentum, and are assumed to be part of the original nucleus which then
30undergoes de-excitation.
31
32
33\noindent Less central impacts give rise to an overlap region in which the
34nucleons can suffer significant momentum change, and zones in the projectile
35and target outside of the overlap where the nucleons are considered as
36spectators to the initial energetic interaction.
37
38
39\noindent The initial description of the interaction must, however, take into
40consideration changes in the direction of the projectile and target nuclei due
41to Coulomb effects, which can then modify the distance of closest approach
42compared with the initial impact parameter.  Such effects can be important for
43low-energy collisions.
44
45
46\section{Initial nuclear dynamics and impact parameter}
47\label{InitDyn}
48For low-energy collisions, we must consider the deflection of the nuclei as a
49result of the Coulomb force (see figure \ref{fig:2}).  Since the dynamics are
50non-relativistic, the motion is governed by the conservation of energy
51equation:
52
53\begin{equation}
54E_{tot}  = \frac{1}{2}\mu \dot r^2  + \frac{{l^2 }}{{2\mu r^2 }} + \frac{{Z_P Z_T e^2 }}{r}
55\label{eqn1}
56\end{equation}
57%Equation ??.1
58
59\noindent where:
60
61\(E_{tot}\) $\>$ = total energy in the centre of mass frame;
62
63\(r\),\(\dot r\) $\>$ = distance between nuclei, and rate of change of distance;
64
65\(l\) $\>$ = angular momentum;
66
67\(\mu\) $\>$ = reduced mass of system {\normalsize\it{}i.e.} \(m_1m_2/(m_1+m_2)\);
68
69\(e\) $\>$ = electric charge (units dependent upon the units for \(E_{tot}\) and \(r\));
70
71\(Z_P\), \(Z_T\) $\>$ = charge numbers for the projectile and target nuclei.
72
73\noindent The angular momentum is based on the impact parameter between the
74nuclei when their separation is large, {\normalsize\it{}i.e.}
75
76\begin{equation}
77E_{tot}  = \frac{1}{2}\frac{{l^2 }}{{\mu b^2 }}\; \Rightarrow \;l{}^2 = 2E_{tot} \mu b^2
78\label{eqn2}
79\end{equation}
80%Equation ??.2
81
82\noindent At the point of closest approach, \(\dot r\)=0, therefore:
83
84
85\begin{equation}
86\begin{array}{l}
87 E_{tot}  = \frac{{E_{tot} b^2 }}{{r^2 }} + \frac{{Z_P Z_T e^2 }}{r} \\ 
88 r^2  = b^2  + \frac{{Z_P Z_T e^2 }}{{E_{tot} }}r \\ 
89 \end{array}
90\label{eqn3}
91\end{equation}
92%Equation ??.3
93
94\noindent Rearranging this equation results in the expression:
95
96\begin{equation}
97b^2  = r(r - r_m )
98\label{eqn4}
99\end{equation}
100%Equation ??.4
101
102\noindent where:
103
104\begin{equation}
105r_m  = \frac{{Z_P Z_T e^2 }}{{E_{tot} }}
106\label{eqn5}
107\end{equation}
108%Equation ??.5
109
110\noindent In the implementation of the abrasion process in Geant4, the
111square of the far-field impact parameter, \(b\), is sampled uniformly subject
112to the distance of closest approach, \(r\), being no greater than
113\(r_P\) + \(r_T\) (the sum of the projectile and target nuclear radii).
114
115\section{Abrasion process}
116\label{abrasion}
117In the abrasion process, as implemented by Wilson {\normalsize\it{}et al} 
118\cite{aaWilson} it is assumed that the nuclear density for the projectile is
119constant up to the radius of the projectile (\(r_P\)) and zero outside.  This
120is also assumed to be the case for the target nucleus.  The amount of nuclear
121material abraded from the projectile is given by the expression:
122
123\begin{equation}
124\Delta _{abr}  = FA_P \left[ {1 - \exp \left( { - \frac{{C_T }}{\lambda }} \right)} \right]
125\label{eqn6}
126\end{equation}
127%Equation ??.6
128
129\noindent where F is the fraction of the projectile in the interaction zone,
130\(\lambda\) is the nuclear mean-free-path, assumed to be:
131
132\begin{equation}
133\lambda  = \frac{{16.6}}{{E^{0.26} }}
134\label{eqn7}
135\end{equation}
136%Equation ??.7
137\noindent \(E\) is the energy of the projectile in MeV/nucleon and \(C_T\) is
138the chord-length at the position in the target nucleus for which the
139interaction probability is maximum.  For cases where the radius of the target
140nucleus is greater than that of the projectile ({\normalsize\it{}i.e.} 
141\(r_T > r_P\)):
142
143\begin{equation}
144C_T  = \left\{ {\begin{array}{*{20}c}
145   {2\sqrt {r_T^2  - x^2 } } & {:x > 0}  \\
146   {2\sqrt {r_T^2  - r^2 } } & {:x \le 0}  \\
147\end{array}} \right.
148\end{equation}
149
150\noindent where:
151
152\begin{equation}
153x = \frac{{r_P^2  + r^2  - r_T^2 }}{{2r}}
154\label{eqn8}
155\end{equation}
156%Equation ??.8
157
158\noindent In the event that \(r_P > r_T\) then \(C_T\) is:
159
160\begin{equation}
161C_T  = \left\{ {\begin{array}{*{20}c}
162   {2\sqrt {r_T^2  - x^2 } } & {:x > 0}  \\
163   {2r_T } & {:x \le 0}  \\
164\end{array}} \right.
165\end{equation}
166
167\noindent where:
168
169\begin{equation}
170x = \frac{{r_T^2  + r^2  - r_P^2 }}{{2r}}
171\label {eqn9}
172\end{equation}
173%Equation ??.9
174
175\noindent The projectile and target nuclear radii are given by the expression:
176
177\begin{equation}
178\begin{array}{l}
179 r_\approx 1.29\sqrt {r_{RMS,P}^2  - 0.84^2 }  \\ 
180 r_\approx 1.29\sqrt {r_{RMS,T}^2  - 0.84^2 }  \\ 
181 \end{array}
182\label{eqn10}
183\end{equation}
184%Equation ??.10
185\noindent The excitation energy of the nuclear fragment formed by the
186spectators in the projectile is assumed to be determined by the excess surface
187area, given by:
188
189\begin{equation}
190\Delta S = 4\pi r_P^2 \left[ {1 + P - \left( {1 - F} \right)^{{\raise0.7ex\hbox{$2$} \!\mathord{\left/
191 {\vphantom {2 3}}\right.\kern-\nulldelimiterspace}
192\!\lower0.7ex\hbox{$3$}}} } \right]
193\label{eqn11}
194\end{equation}
195%Equation ??.11
196
197\noindent where the functions \(P\) and \(F\) are given in section
198\ref{PandF}.  Wilson {\normalsize\it{}et al} equate this surface area to the
199excitation to:
200
201\begin{equation}
202E_S  = 0.95\Delta S
203\label{eqn12}
204\end{equation}
205%Equation ??.12
206
207\noindent if the collision is peripheral and there is no significant
208distortion of the nucleus, or
209
210\begin{equation}
211\begin{array}{l}
212 E_S  = 0.95\left\{ {1 + 5F + \Omega F^3 } \right\}\Delta S \\ 
213 \Omega  = \left\{ {\begin{array}{*{20}c}
214   0 & {:A_P  > {\rm 16}}  \\
215   {1500} & {:A_P  < 12}  \\
216   {1500 - 320\left( {A_P  - 12} \right)} & {:12 \le A_\le 16}  \\
217\end{array}} \right. \\ 
218 \end{array}
219\label{eqn13}
220\end{equation}
221%Equation ??.13
222\noindent if the impact separation is such that \(r << r_P\)+\(r_T\)
223\(E_S\) is in MeV provided \(\Delta S\) is in fm$^2$.
224
225\noindent For the abraded region, Wilson {\normalsize\it{}et al} assume that
226fragments with a nucleon number of five are unbounded, 90\% of fragments with
227a nucleon number of eight are unbound, and 50\% of fragments with a nucleon
228number of nine are unbound.  This was not implemented within the Geant4
229version of the abrasion model, and disintegration of the pre-fragment was only
230simulated by the subsequent de-excitation physics models in the
231G4DeexcitationHandler (evaporation, {\normalsize\it{}etc.} or
232G4WilsonAblationModel) since the yields of lighter fragments were already
233underestimated compared with experiment.
234
235\noindent In addition to energy as a result of the distortion of the fragment,
236some energy is assumed to be gained from transfer of kinetic energy across the
237boundaries of the nuclei.  This is approximated to the average energy
238transferred to a nucleon per unit intersection pathlength (assumed to be 13
239MeV/fm) and the longest chord-length, \(C_l\), and for half of the
240nucleon-nucleon collisions it is assumed that the excitation energy is:
241
242
243\begin{equation}
244E_X^*  = \left\{ {
245\begin{array}{*{20}c}
246   {13 \cdot \left[ {1 + \frac{{C_t  - 1.5}}{3}} \right]C_l } & {:C_t  > 1.5{\rm fm}}  \\
247   {{\rm 13} \cdot {\rm C}_l } & {:C_\le 1.5{\rm fm}}  \\
248\end{array}} \right.
249\label{eqn14}
250\end{equation}
251%Equation ??.14
252
253\noindent where:
254
255\begin{equation}
256C_l  = \left\{ {
257\begin{array}{*{20}c}
258   {2\sqrt {r_P^2  + 2rr_T  - r^2  - r_T^2 } } & {r > r_T }  \\
259   {2r_P } & {r \le r_T }  \\
260\end{array}} \right.
261\end{equation}
262\begin{equation}
263C_t  = 2\sqrt {r_P^2  - \frac{{\left( {r_P^2  + r^2  - r_T^2 } \right)^2 }}{{4r^2 }}} 
264\label{eqn15}
265\end{equation}
266%Equation ??.15
267
268\noindent For the remaining events, the projectile energy is assumed to be
269unchanged.  Wilson {\normalsize\it{}et al} assume that the energy required to
270remove a nucleon is 10MeV, therefore the number of nucleons removed from the
271projectile by ablation is:
272
273\begin{equation}
274\Delta _{abl}  = \frac{{E_S  + E_X }}{{10}} + \Delta _{spc} 
275\label{eqn16}
276\end{equation}
277%Equation ??.16
278
279\noindent where \(\Delta _{spc}\) is the number of loosely-bound spectators
280in the interaction region, given by:
281
282\begin{equation}
283\Delta _{spc}  = A_P F\exp \left( { - \frac{{C_T }}{\lambda }} \right)
284\label{eqn17}
285\end{equation}
286%Equation ??.17
287\noindent Wilson {\normalsize\it{}et al} appear to assume that for half of the
288events the excitation energy is transferred into one of the nuclei (projectile
289or target), otherwise the energy is transferred in to the other (target or
290projectile respectively).
291
292\noindent The abrasion process is assumed to occur without preference for the
293nucleon type, {\normalsize\it{}i.e.} the probability of a proton being abraded
294from the projectile is proportional to the fraction of protons in the original
295projectile, therefore:
296
297\begin{equation}
298\Delta Z_{abr}  = \Delta _{abr} \frac{{Z_P }}{{A_P }}
299\label{eqn18}
300\end{equation}
301%Equation ??.18
302
303\noindent In order to calculate the charge distribution of the final fragment,
304Wilson {\normalsize\it{}et al} assume that the products of the interaction lie
305near to nuclear stability and therefore can be sampled according to the
306Rudstam equation (see section \ref{ablation}).  The other obvious condition is
307that the total charge must remain unchanged.
308
309\section{Abraded nucleon spectrum}
310\label{spectrum}
311Cucinotta has examined different formulae to represent the secondary protons
312spectrum from heavy ion collisions \cite{aaCucinotta}.  One of the models
313(which has been implemented to define the final state of the abrasion process)
314represents the momentum distribution of the secondaries as:
315
316\begin{equation}
317\psi (p) \propto \sum\limits_{i = 1}^3 {C_i \exp \left( { - \frac{{p^2 }}{{2p_i^2 }}} \right)}  + d_0 \frac{{\gamma p}}{{\sinh \left( {\gamma p} \right)}}
318\label{eqn19}
319\end{equation}
320%Equation ??.19
321
322\noindent where:
323
324\(\psi (p)\) \indent = number of secondary protons with momentum \(p\) per
325unit of momentum phase space [c$^3$/MeV$^3$];
326
327\(p\) \indent = magnitude of the proton momentum in the rest frame of the
328nucleus from which the particle is projected [MeV/c];
329
330\(C1\), \(C2\), \(C3\) \indent = 1.0, 0.03, and 0.0002;
331
332\(p1\), \(p2\), \(p3\) \indent = \(\sqrt \frac{2} {5} p_F\),
333\(\sqrt \frac{6} {5} p_F\), 500 [MeV/c]
334
335\(p_F\) \indent = Momentum of nucleons in the nuclei at the Fermi surface
336[MeV/c]
337
338\(d_0\) \indent = 0.1
339
340\(\frac 1 \gamma\) \indent = 90 [MeV/c];
341
342\noindent G4WilsonAbrasionModel approximates the momentum distribution for the
343neutrons to that of the protons, and as mentioned above, the nucleon type
344sampled is proportional to the fraction of protons or neutrons in the original
345nucleus.
346
347\noindent The angular distribution of the abraded nucleons is assumed to be
348isotropic in the frame of reference of the nucleus, and therefore those
349particles from the projectile are Lorentz-boosted according to the initial
350projectile momentum.
351
352\section{De-excitation of the projectile and target nuclear pre-fragments
353by standard Geant4 de-excitation physics}
354\label{deexcitation}
355Unless specified otherwise, G4WilsonAbrasionModel will instantiate the
356following de-excitation models to treat subsequent particle emission of the
357excited nuclear pre-fragments (from both the projectile and the target):
358
359\trivlist
360\item 1 G4Evaporation, which will perform nuclear evaporation of
361($\alpha$-particles, $^3$He, $^3$H, $^2$H, protons and neutrons, in
362competition with photo-evaporation and nuclear fission (if the nucleus has
363sufficiently high A).
364
365\item 2 G4FermiBreakUp, for nuclei with \(A \le\) 12 and \(Z \le\) 6.
366
367\item 3 G4StatMF, for multi-fragmentation of the nucleus (minimum energy for
368this process set to 5 MeV).
369\endtrivlist
370
371\noindent As an alternative to using this de-excitation scheme, the user may
372provide to the G4WilsonAbrasionModel a pointer to her own de-excitation
373handler, or invoke instantiation of the ablation model (G4WilsonAblationModel).
374
375\section{De-excitation of the projectile and target nuclear pre-fragments by
376nuclear ablation}
377\label{ablation}
378A nuclear ablation model, based largely on the description provided by
379Wilson {\normalsize\it{}et al} \cite{aaWilson}, has been developed to provide
380a better approximation for the final nuclear fragment from an abrasion
381interaction.  The algorithm implemented in G4WilsonAblationModel uses the same
382approach for selecting the final-state nucleus as NUCFRG2 and determining the
383particles evaporated from the pre-fragment in order to achieve that state. 
384However, use is also made of classes in Geant4's evaporation physics to
385determine the energies of the nuclear fragments produced.
386
387\noindent The number of nucleons ablated from the nuclear pre-fragment
388(whether as nucleons or light nuclear fragments) is determined based on the
389average binding energy, assumed by Wilson {\normalsize\it{}et al} to be
39010 MeV, {\normalsize\it{}i.e.}:
391
392\begin{equation}
393A_{abl}  = \left\{ {\begin{array}{*{20}c}
394   {Int\left( {\frac{{E_x }}{{10MeV}}} \right)} \hfill & {:A_{PF}  > Int\left( {\frac{{E_x }}{{10MeV}}} \right)} \hfill  \\
395   {A_{PF} } \hfill & {:otherwise} \hfill  \\
396\end{array}} \right.
397\label{eqn20}
398\end{equation}
399%Equation ??.20
400
401\noindent Obviously, the nucleon number of the final fragment, \(A_F\), is
402then determined by the number of remaining nucleons. The proton number of the
403final nuclear fragment (\(Z_F\)) is sampled stochastically using the Rudstam
404equation:
405
406\begin{equation}
407\sigma (A_F ,Z_F ) \propto \exp \left( { - R\left| {Z_F  - SA_F  - TA_F^2 } \right|^{{\raise0.7ex\hbox{$3$} \!\mathord{\left/
408 {\vphantom {3 2}}\right.\kern-\nulldelimiterspace}
409\!\lower0.7ex\hbox{$2$}}} } \right)
410\label{eqn21}
411\end{equation}
412%Equation ??.21
413
414\noindent Here \(R\)=\(11.8/AF^{0.45}\), \(S\)=\(0.486\), and
415\(T\)=\(3.8 \cdot 10^{-4}\).  Once \(Z_F\) and \(A_F\) have been calculated,
416the species of the ablated (evaporated) particles are determined again using
417Wilson's algorithm.  The number of $\alpha$-particles is determined first, on
418the basis that these have the greatest binding energy:
419
420\begin{equation}
421N_\alpha   = \left\{ {\begin{array}{*{20}c}
422   {Int\left( {\frac{{Z_{abl} }}{2}} \right)} & {:Int\left( {\frac{{Z_{abl} }}{2}} \right) < Int\left( {\frac{{A_{abl} }}{4}} \right)}  \\
423   {Int\left( {\frac{{A_{abl} }}{4}} \right)} & {:Int\left( {\frac{{Z_{abl} }}{2}} \right) \ge Int\left( {\frac{{A_{abl} }}{4}} \right)}  \\
424\end{array}} \right.
425\label{eqn22}
426\end{equation}
427%Equation ??.22
428
429\noindent Calculation of the other ablated nuclear/nucleon species is
430determined in a similar fashion in order of decreasing binding energy per
431nucleon of the ablated fragment, and subject to conservation of charge and
432nucleon number.
433
434\noindent Once the ablated particle species are determined, use is made of the
435Geant4 evaporation classes to sample the order in which the particles are
436ejected (from G4AlphaEvaporationProbability, G4He3EvaporationProbability,
437G4TritonEvaporationProbability, G4DeuteronEvaporationProbability,
438G4ProtonEvaporationProbability and G4NeutronEvaporationProbability) and the
439energies and momenta of the evaporated particle and the residual nucleus at
440each two-body decay (using G4AlphaEvaporationChannel, G4He3EvaporationChannel,
441G4TritonEvaporationChannel, G4DeuteronEvaporationChannel,
442G4ProtonEvaporationChannel and G4NeutronEvaporationChannel).  If at any stage
443the probability for evaporation of any of the particles selected by the
444ablation process is zero, the evaporation is forced, but no significant
445momentum is imparted to the particle/nucleus.  Note, however, that any
446particles ejected from the projectile will be Lorentz boosted depending upon
447the initial energy per nucleon of the projectile.
448
449\section{Definition of the functions P and F used in the abrasion model}
450\label{PandF}
451In the first instance, the form of the functions $P$ and $F$ used in the
452abrasion model are dependent upon the relative radii of the projectile and
453target and the distance of closest approach of the nuclear centres.  Four
454radius condtions are treated.
455
456\noindent
457\underline{\bf $r_T > r_P$ and $r_T-r_P \le r \le r_T+r_P$} :
458
459\begin{equation}
460P = 0.125\sqrt {\mu \nu } \left( {\frac{1}{\mu } - 2} \right)\left( {\frac{{1 - \beta }}{\nu }} \right)^2  - 0.125\left[ {0.5\sqrt {\mu \nu } \left( {\frac{1}{\mu } - 2} \right) + 1} \right]\left( {\frac{{1 - \beta }}{\nu }} \right)^3
461\end{equation}
462
463\begin{equation}
464F = 0.75\sqrt {\mu \nu } \left( {\frac{{1 - \beta }}{\nu }} \right)^2  - 0.125\left[ {3\sqrt {\mu \nu }  - 1} \right]\left( {\frac{{1 - \beta }}{\nu }} \right)^3
465\end{equation} \\
466
467\noindent where:
468
469\begin{eqnarray}
470  \nu  = \frac{{r_P }}{{r_P  + r_T }} \\ 
471  \beta  = \frac{r}{{r_P  + r_T }} \\ 
472  \mu  = \frac{{r_T }}{{r_P }} 
473\end{eqnarray}
474
475
476\noindent
477\underline{\bf $r_T > r_P$ and $r < r_T-r_P$} :
478
479\begin{equation}
480P =  - 1
481\end{equation}
482\begin{equation}
483F = 1
484\end{equation}
485
486\noindent
487\underline{\bf $r_P > r_T$ and $r_P-r_T \le r \le r_P+r_T$} :
488
489\begin{eqnarray}
490 P = 0.125\sqrt {\mu \nu } \left( {\frac{1}{\mu } - 2} \right)\left( {\frac{{1 - \beta }}{\nu }} \right)^2
491\end{eqnarray}
492\begin{eqnarray}
493 - 0.125\left\{ {0.5\sqrt {\frac{\nu }{\mu }} \left( {\frac{1}{\mu } - 2} \right) - \left[ {\frac{{\sqrt {1 - \mu ^2 } }}{\nu } - 1} \right]\sqrt {\frac{{2 - \mu }}{{\mu ^5 }}} } \right\}\left( {\frac{{1 - \beta }}{\nu }} \right)^3 \nonumber 
494\end{eqnarray}
495
496\begin{eqnarray}
497 F = 0.75\sqrt {\mu \nu } \left( {\frac{{1 - \beta }}{\nu }} \right)^2
498\end{eqnarray}
499\begin{eqnarray}
500 - 0.125\left[ {3\sqrt {\frac{\nu }{\mu }}  - \frac{{\left[ {1 - \left( {1 - \mu ^2 } \right)^{{\raise0.7ex\hbox{$3$} \!\mathord{\left/
501  {\vphantom {3 2}}\right.\kern-\nulldelimiterspace}
502 \!\lower0.7ex\hbox{$2$}}} } \right]\sqrt {1 - \left( {1 - \mu } \right)^2 } }}{{\mu ^3 }}} \right]\left( {\frac{{1 - \beta }}{\nu }} \right)^3 \nonumber
503\end{eqnarray}
504
505
506\noindent
507\underline{\bf $r_P > r_T$ and $r < r_T-r_P$} :
508
509\begin{equation}
510P = \left[ {\frac{{\sqrt {1 - \mu ^2 } }}{\nu } - 1} \right]\sqrt {1 - \left( {\frac{\beta }{\nu }} \right)^2 } 
511\end{equation}
512\begin{equation}
513F = \left[ {1 - \left( {1 - \mu ^2 } \right)^{{\raise0.7ex\hbox{$3$} \!\mathord{\left/
514 {\vphantom {3 2}}\right.\kern-\nulldelimiterspace}
515\!\lower0.7ex\hbox{$2$}}} } \right]\sqrt {1 - \left( {\frac{\beta }{\nu }} \right)^2 } 
516\end{equation}
517
518\begin{figure}
519  \includegraphics[scale=0.8]{hadronic/theory_driven/AbrasionAblation/abrasion.eps}
520\caption{In the abrasion process, a fraction of the nucleons in the projectile
521and target nucleons interact to form a fireball region with a velocity between
522that of the projectile and the target.  The remaining spectator nucleons in
523the projectile and target are not initially affected (although they do suffer
524change as a result of longer-term de-excitation).}
525\label{fig:1}       % Give a unique label
526\end{figure}
527
528\begin{figure}
529  \includegraphics[scale=0.55, angle=0]{hadronic/theory_driven/AbrasionAblation/deflection.eps}
530\caption{Illustration clarifying impact parameter in the far-field (\(b\)) and
531 actual impact parameter (\(r\)).}
532\label{fig:2}       % Give a unique label
533\end{figure}
534
535\section{Status of this document}
536 18.06.04 created by Peter Truscott \\
537
538\begin{latexonly}
539
540\begin{thebibliography}{}
541
542\bibitem{aaWilson}
543J W Wilson, R K Tripathi, F A Cucinotta, J K Shinn, F F Badavi, S Y Chun,
544J W Norbury, C J Zeitlin, L Heilbronn, and J Miller, "NUCFRG2: An evaluation
545of the semiempirical nuclear fragmentation database," NASA Technical Paper
5463533, 1995.
547
548\bibitem{aaTownsend}
549Lawrence W Townsend, John W Wilson, Ram K Tripathi, John W Norbury,
550Francis F Badavi, and Ferdou Khan, "HZEFRG1, An energy-dependent semiempirical
551nuclear fragmentation model," NASA Technical Paper 3310, 1993.
552
553\bibitem{aaCucinotta}
554Francis A Cucinotta, "Multiple-scattering model for inclusive proton
555production in heavy ion collisions," NASA Technical Paper 3470, 1994.
556
557\end{thebibliography}
558
559\end{latexonly}
560
561\begin{htmlonly}
562
563\section{Bibliography}
564
565\begin{enumerate}
566\item
567J W Wilson, R K Tripathi, F A Cucinotta, J K Shinn, F F Badavi, S Y Chun,
568J W Norbury, C J Zeitlin, L Heilbronn, and J Miller, "NUCFRG2: An evaluation
569of the semiempirical nuclear fragmentation database," NASA Technical Paper
5703533, 1995.
571
572\item
573Lawrence W Townsend, John W Wilson, Ram K Tripathi, John W Norbury,
574Francis F Badavi, and Ferdou Khan, "HZEFRG1, An energy-dependent semiempirical
575nuclear fragmentation model," NASA Technical Paper 3310, 1993.
576
577\item
578Francis A Cucinotta, "Multiple-scattering model for inclusive proton
579production in heavy ion collisions," NASA Technical Paper 3470, 1994.
580
581\end{enumerate}
582
583\end{htmlonly}
584
Note: See TracBrowser for help on using the repository browser.