% \subsection{Neutron production} % \begin{figure}[tbp] % \resizebox{0.95\textwidth}{!} % { % \includegraphics{hadronic/theory_driven/BinaryCascade/dsde_256.eps} % } % \caption{1} % \label{nSigma} % \end{figure} % % \begin{figure}[tbp] % \resizebox{0.95\textwidth}{!} % { % \includegraphics{hadronic/theory_driven/BinaryCascade/dsdedt_256_7.5.eps} % } % \caption{2} % \label{nSigma} % \end{figure} % \begin{figure}[tbp] \begin{center} \includegraphics[width=6.5cm]{hadronic/theory_driven/BinaryCascade/dsdedt_al_113.eps} \end{center} \caption{ Double differential cross-section for neutrons produced in proton scattering off Aluminum. Proton incident energy was 113~MeV. } \label{nSigma.BC} \end{figure} \begin{figure}[tbp] \begin{center} \includegraphics[width=6.5cm]{hadronic/theory_driven/BinaryCascade/dsdedt_al_256.eps} \end{center} \caption{ Double differential cross-section for neutrons produced in proton scattering off Aluminum. Proton incident energy was 256~MeV. The points are data, the histogram is Binary Cascade prediction. } \label{dsdedt_al_256} \end{figure} \begin{figure}[tbp] \begin{center} \includegraphics[width=6.5cm]{hadronic/theory_driven/BinaryCascade/dsdedt_al_600.eps} \end{center} \caption{ Double differential cross-section for neutrons produced in proton scattering off Aluminum. Proton incident energy was 597~MeV. The points are data, the histogram is Binary Cascade prediction. } \label{dsdedt_al_600} \end{figure} \begin{figure}[tbp] \begin{center} \includegraphics[width=6.5cm]{hadronic/theory_driven/BinaryCascade/dsdedt_al_800.eps} \end{center} \caption{ Double differential cross-section for neutrons produced in proton scattering off Aluminum. Proton incident energy was 800~MeV. The points are data, the histogram is Binary Cascade prediction. } \label{dsdedt_al_800} \end{figure} \begin{figure}[tbp] \begin{center} \includegraphics[width=6.5cm]{hadronic/theory_driven/BinaryCascade/dsdedt_fe_113.eps} \end{center} \caption{ Double differential cross-section for neutrons produced in proton scattering off Iron. Proton incident energy was 113~MeV. The points are data, the histogram is Binary Cascade prediction. } \label{dsdedt_fe_113} \end{figure} \begin{figure}[tbp] \begin{center} \includegraphics[width=6.5cm]{hadronic/theory_driven/BinaryCascade/dsdedt_fe_256.eps} \end{center} \caption{ Double differential cross-section for neutrons produced in proton scattering off Iron. Proton incident energy was 256~MeV. The points are data, the histogram is Binary Cascade prediction. } \label{dsdedt_fe_256} \end{figure} \begin{figure}[tbp] \begin{center} \includegraphics[width=6.5cm]{hadronic/theory_driven/BinaryCascade/dsdedt_fe_600.eps} \end{center} \caption{ Double differential cross-section for neutrons produced in proton scattering off Iron. Proton incident energy was 597~MeV. The points are data, the histogram is Binary Cascade prediction. } \label{dsdedt_fe_600} \end{figure} \begin{figure}[tbp] \begin{center} \includegraphics[width=6.5cm]{hadronic/theory_driven/BinaryCascade/dsdedt_fe_800.eps} \end{center} \caption{ Double differential cross-section for neutrons produced in proton scattering off Iron. Proton incident energy was 800~MeV. The points are data, the histogram is Binary Cascade prediction. } \label{dsdedt_fe_800} \end{figure} \begin{figure}[tbp] \begin{center} \includegraphics[width=6.5cm]{hadronic/theory_driven/BinaryCascade/dsdedt_pb_113.eps} \end{center} \caption{ Double differential cross-section for neutrons produced in proton scattering off Lead. Proton incident energy was 113~MeV. The points are data, the histogram is Binary Cascade prediction. } \label{dsdedt_pb_113} \end{figure} \begin{figure}[tbp] \begin{center} \includegraphics[width=6.5cm]{hadronic/theory_driven/BinaryCascade/dsdedt_pb_256.eps} \end{center} \caption{ Double differential cross-section for neutrons produced in proton scattering off Lead. Proton incident energy was 256~MeV. The points are data, the histogram is Binary Cascade prediction. } \label{dsdedt_pb_256} \end{figure} \begin{figure}[tbp] \begin{center} \includegraphics[width=6.5cm]{hadronic/theory_driven/BinaryCascade/dsdedt_pb_600.eps} \end{center} \caption{ Double differential cross-section for neutrons produced in proton scattering off Lead. Proton incident energy was 597~MeV. The points are data, the histogram is Binary Cascade prediction. } \label{dsdedt_pb_600} \end{figure} \begin{figure}[tbp] \begin{center} \includegraphics[width=6.5cm]{hadronic/theory_driven/BinaryCascade/dsdedt_pb_800.eps} \end{center} \caption{ Double differential cross-section for neutrons produced in proton scattering off Lead. Proton incident energy was 800~MeV. The points are data, the histogram is Binary Cascade prediction. } \label{dsdedt_pb_800} \end{figure} \begin{figure}[tbp] \begin{center} \includegraphics[width=6.5cm]{hadronic/theory_driven/BinaryCascade/pi_45.eps} \end{center} \caption{ Double differential cross-section for pions produced at $45^\circ$ in proton scattering off various materials. Proton incident energy was 597~MeV in each case. The points are data, the histogram is Binary Cascade prediction. } \label{pi_45} \end{figure} % - Angle integrated energy distributions @ 160 MeV for Al, Zr, Pb % - Quasi-elastic peaks @ 256 MeV all materials % - double differentials: Al, Fe, Pb; all angles, 113, 160, 256, 595,800 MeV