source: trunk/documents/UserDoc/UsersGuides/PhysicsReferenceManual/latex/hadronic/theory_driven/BinaryCascade/nucleus.tex @ 1208

Last change on this file since 1208 was 1208, checked in by garnier, 15 years ago

CVS update

File size: 2.9 KB
Line 
1%\subsection{The description of the target nucleus and fermi motion \editor{Gunter}}
2
3The nucleus is constructed from $A$
4nucleons and $Z$ protons with nucleon coordinates $\mathbf{r}_i$ and momenta
5$\mathbf{p}_i$, with $i = 1,2,...,A$.
6We use a common initialization Monte Carlo procedure, which
7is realized in the most of the high energy nuclear interaction models:
8\begin{itemize}
9\item Nucleon radii $r_i$ are selected randomly in the nucleus rest frame
10according to nucleon density $\rho(r_i)$.
11For heavy nuclei with $A > 16$ \cite{GLMP91.BC} nucleon density is
12\begin{equation}
13\label{NIS1.BC}\rho(r_i) =
14 \frac{\rho_0}{1 + \exp{[(r_i - R)/a]}}
15\end{equation}
16where
17\begin{equation}
18\label{NIS2.BC}\rho_0 \approx \frac{3}{4\pi R^3}(1+\frac{a^2\pi^2}{R^2})^{-1}.
19\end{equation}
20Here $R=r_0 A^{1/3}$ \ fm and $r_0=1.16(1-1.16A^{-2/3})$ \ fm and $a
21\approx 0.545$ fm.  For light nuclei with $A < 17$ nucleon density is
22given by a harmonic oscillator shell model \cite{Elton61.BC}, e. g.
23\begin{equation}
24\label{4aap6.BC} \rho(r_i) = (\pi R^2)^{-3/2}\exp{(-r_i^2/R^2)},
25\end{equation}
26where $R^2 = 2/3<r^2> = 0.8133 A^{2/3}$ \ fm$^2$.
27 To take into account nucleon
28repulsive core it is assumed that internucleon distance $d > 0.8$ \ fm;
29
30\item The nucleus is assumed to be isotropic, i.e. we place each nucleon
31using a random direction and the previously determined radius  $r_i$.
32
33\item The initial momenta of the nucleons $p_i$ are randomly choosen between $0$
34and $p^{max}_F(r)$, where
35the maximal momenta of nucleons (in the local Thomas-Fermi
36approximation \cite{DF74.BC}) depends from
37the proton or neutron density $\rho$ according to
38\begin{equation}
39\label{NIS5.BC} p^{max}_F(r) = \hbar c(3\pi^2 \rho(r))^{1/3}
40\end{equation}
41
42
43\item To obtain momentum components, it is assumed that nucleons are distributed
44isotropic in momentum space;  i.e. the momentum direction is chosen at random.
45
46\item The nucleus must be centered in momentum space around
47$\mathbf{0}$, \textit{i. e.}
48 the nucleus must be at rest, i. e. $\sum_i {\bf p_i} = \bf 0$;
49 To achieve this, we choose one nucleon to compensate the sum the remaining
50nucleon momenta $p_rest=\sum_{i=1}^{i=A-1}$. If this sum is larger than maximum
51momentum  $p^{max}_F(r)$, we change the direction of the momentum of a few
52nucleons. If this does not lead to a possible momentum value, than we repeat the
53procedure with a different nucleon having a larger maximum momentum
54$p^{max}_F(r)$. In the rare case this fails as well, we choose new momenta for
55all nucleons.
56
57This procedure gives special for hydrogen $^1$H, where the proton has momentum
58$p=0$, and for deuterium $^2$H, where the momenta of proton and neutron are
59equal, and in opposite direction.
60
61
62\item We compute energy per nucleon $e = E/A = m_{N} + B(A,Z)/A$,
63where $m_N$ is nucleon mass and the nucleus binding energy $B(A,Z)$ is given
64by the tabulation of \cite{nucleus_binding}:
65 and find the effective mass of each nucleon $m^{eff}_i = 
66\sqrt{(E/A)^2 - p^{2\prime}_i}$.
67\end{itemize}
Note: See TracBrowser for help on using the repository browser.