source: trunk/documents/UserDoc/UsersGuides/PhysicsReferenceManual/latex/hadronic/theory_driven/Cascade/Cascade.tex @ 1214

Last change on this file since 1214 was 1208, checked in by garnier, 15 years ago

CVS update

File size: 20.4 KB
Line 
1\chapter{Bertini Intranuclear Cascade Model in {\sc Geant4} }
2
3\section{Introduction} 
4This model is based on a re-engineering of the INUCL code and
5includes the Bertini intra-nuclear cascade model with excitons, a
6pre-equilibrium model, a nucleus explosion model, a fission model, and an
7evaporation model.  Intermediate energy nuclear reactions from 100~MeV to
85~GeV are treated for protons, neutrons, pions, photons and nuclear
9isotopes.  We present an overview of the models, review results achieved
10from simulations and make comparisons with experimental data.
11
12The intranuclear cascade model (INC) was was first proposed by Serber in
131947 \cite{serber47}.  He noticed that in particle-nuclear collisions the
14deBroglie wavelength of the incident particle is comparable (or shorter) than
15the average intra-nucleon distance.  Hence, a description of interactions
16in terms of particle-particle collisions is justified.
17
18The INC has been used succesfully in Monte Carlo simulations at intermediate
19energies since Goldberger made the first hand-calculations in
201947 \cite{goldberger48}.  The first computer simulations were done by
21Metropolis et al. in 1958 \cite{metropolis58}. Standard methods in INC
22implementations were developed when Bertini published his results in
231968 \cite{bertini68}.  An important addition to INC was the exciton model
24introduced by Griffin in 1966 \cite{griffin66}.
25
26The current presentation describes the implementation of the Bertini INC
27model within the {\sc Geant4} hadronic physics
28framework \cite{geant4collaboration03}.  This framework is flexible and
29allows for the modular implementation of various kinds of hadronic
30interactions.  It is based on the concepts of physics processes and models. 
31While the process is a general concept, models may be restricted according
32to process type, material, element and energy range.  Several models can be
33utilized by one process class; for instance, a process class for inelastic
34collisions can use a different model for each energy range.
35
36The process classes use model classes to determine the secondaries produced
37in the interaction and to calculate the momenta of the particles.  Here we
38present a collection of such models which describe a medium-energy
39intranuclear cascade.
40
41\section{The Geant4 Cascade Model}
42
43Inelastic particle-nucleus collisions are characterized by both fast and slow
44components.  The fast ($10^{-23} - 10^{-22} s$) intra-nuclear cascade
45results in a highly excited nucleus which may decay by fission or
46pre-equilibrium emission. The slower ($10^{-18} - 10^{-16} s$) compound
47nucleus phase follows with evaporation.  A Boltzmann equation must be solved
48to treat the collision process in detail.
49 
50The intranuclear cascade (INC) model developed by
51Bertini \cite{bertini68, bertini71} solves the Boltzmann equation on
52average.  This model has been implemented in several codes such as
53HETC \cite{alsmiller90}.  Our model, which is based on a re-engineering of
54the INUCL code  \cite{titarenko99a}, includes the Bertini intranuclear cascade
55model with excitons, a pre-equilibrium model, a simple nucleus explosion
56model, a fission model, and an evaporation model.
57
58The target nucleus is modeled as a three-region approximation to the
59continuously changing density distribution of nuclear matter within nuclei.
60The cascade begins when the incident particle strikes a nucleon in the
61target nucleus and produces secondaries.  The secondaries may in turn
62interact with other nucleons or be absorbed.  The cascade ends when all
63particles, which are kinematically able to do so, escape the nucleus.
64At that point energy conservation is checked.  Relativistic kinematics is
65applied throughout the cascade. 
66
67\subsection{Model Limits}
68
69The model is valid for incident protons, neutrons and pions.  Particles
70treated in the model include protons, neutrons, pions, photons and nuclear
71isotopes.  All types of targets are allowed.
72
73The necessary condition of validity of the INC model is
74$\lambda_{B} / v << \tau_{c} << \Delta t$, where $\delta_{B}$ is the deBroglie
75wavelenth of the nucleons, $v$ is the average relative velocity between two
76nucleons and $\Delta t$ is the time interval between collisions.
77At energies below $200 MeV$, this condition is no longer strictly valid,
78and a pre-quilibrium model must be invoked.  At energies greater than
79$\approx$ 10 GeV) the INC picture breaks down.  This model has been tested
80against experimental data at incident kinetic energies between 100~MeV and
815~GeV.
82
83\subsection{Intranuclear Cascade Model}
84
85The basic steps of the INC model are summarized as follows:
86
87\begin{enumerate}
88\item the space point at which the incident particle enters the nucleus is
89selected uniformly over the projected area of the nucleus,
90\item the total particle-particle cross sections and region-depenent nucleon
91densities are used to select a path length for the projectile,
92\item the momentum of the struck nucleon, the type of reaction and the
93four-momenta of the reaction products are determined, and
94\item the exciton model is updated as the cascade proceeds.
95\item If the Pauli exclusion principle allows and
96$E_{particle} > E_{cutoff}$ = 2~MeV, step (2) is performed to transport the
97products.
98\end{enumerate}
99
100After the intra-nuclear cascade, the residual excitation energy of the
101resulting nucleus is used as input for non-equilibrium model.
102
103\subsection{Nuclear Model}
104
105Some of the basic features of the nuclear model are:
106
107\begin{itemize}
108\item the nucleons are assumed to have a Fermi gas momentum distribution.
109The Fermi energy is calculated in a local density approximation i.e. the
110Fermi energy is made radius-dependent with Fermi momentum
111$p_{F}(r) = (\frac{3 \pi^2 \rho(r)}{2})^\frac{1}{3}$.
112%\item Nuclear density effects are re-calculated after each step,
113\item Nucleon binding energies (BE) are calculated using the mass formula.
114A parameterization of the nuclear binding energy uses a combination of the
115Kummel mass formula and experimental data.  Also, the asymptotic high
116temperature mass formula is used if it is impossible to use experimental data.
117\end{itemize}
118
119\subsubsection{Initialization}
120The initialization phase fixes the nuclear radius and momentum according to
121the Fermi gas model.
122
123If the target is hydrogen (A = 1) a direct particle-particle collision is
124performed, and no nuclear modeling is required.
125
126If $1 < A < 4$, a nuclear model consisting of one layer with a radius of
1278.0 fm is created.
128
129For $4 < A < 11$, the nuclear model is composed of three concentric spheres
130$i = \{1, 2, 3\}$ with radius
131$$r_{i}(\alpha_{i}) = \sqrt{C_{1}^{2} (1 - \frac{1}{A}) + 6.4} \sqrt{-log( \alpha_{i})}$$.
132
133Here $\alpha_{i} = \{0.01, 0.3, 0.7\}$ and $C_{1} = 3.3836 A^{1/3}$.
134
135If $A > 11$, a nuclear model with three concentric spheres is also used.  The
136sphere radius is now defined as
137\begin{equation}
138r_{i}(\alpha_{i}) =  C_{2} \log({\frac{1 + e^{- \frac{C_{1}}{C_{2}}}}{\alpha_{i}} - 1}) + C_{1} ,
139\end{equation}
140where $C_{2} = 1.7234$.
141
142The potential energy $V$ for nucleon $N$ is
143\begin{equation}
144V_{N} = \frac{p_{F}^2}{2 m_{N}} + BE_{N}(A, Z) ,
145\end{equation}
146where $p_f$ is the Fermi momentum and $BE$ is the binding energy.
147 
148The momentum distribution in each region follows the Fermi distribution with
149zero temperature.
150
151\begin{equation}
152 f(p) = c p ^2
153\end{equation}
154where
155
156\begin{equation}
157\int_0^{p_F} f(p) dp = n_{p} \rm{ or }  n_{n}
158\end{equation}
159where $n_p$ and $n_n$ are the number of protons or neutrons in the region.
160$P_f$ is the momentum corresponding to the Fermi energy
161
162\begin{equation}
163 E_f = \frac{p_F^2}{2 m_N} = \frac{\hbar^2}{2 m_N}(\frac{3 \pi^{2}}{v})^\frac{2}{3} ,
164\end{equation}
165which depends on the density $n/v$ of particles, and which is different for
166each particle and each region.
167
168\subsubsection{Pauli Exclusion Principle}
169The Pauli exclusion principle forbids interactions where the products would be
170in occupied states.  Following the assumption of a completely degenerate Fermi
171gas, the levels are filled from the lowest level.
172The minimum energy allowed for the products of a collision correspond to the
173lowest unfilled level of the system, which is the Fermi energy in the region.
174So in practice, the Pauli exclusion principle is taken into account by
175accepting only secondary nucleons which have $E_N > E_f$.
176
177
178\subsubsection{Cross Sections and Kinematics}
179
180Path lengths of nucleons in the nucleus are sampled according to the local
181density and the free $N-N$ cross sections.  Angles after the collision are
182sampled from experimental differential cross sections.
183%{\sc Geant4} cascade model uses tabulated cross-sections.
184Tabulated total reaction cross sections are calculated by Letaw's
185formulation \cite{letaw83, letaw93, pearlstein89}.
186%:::$45 A^0.7 (1+0.016 sin(5.3-2.63 log10(A)))^(1-0.62 exp(-E / 200) sin(10.9 E^(-0.28)))
187For $N-N$ cross sections the parameterizations are based on the experimental
188energy and isospin dependent data.
189The parameterization described in \cite{barashenkov72} is used.
190
191For pions the intra-nuclear cross sections are provided to treat elastic
192collisions and the following inelastic channels:
193$\pi^{-}$p $\rightarrow$ $\pi^{0}$n,
194$\pi^{0}$p $\rightarrow$ $\pi^{+}$n,
195$\pi^{0}$n $\rightarrow$ $\pi^{-}$p, and
196$\pi^+$n $\rightarrow$ $\pi^0$p.
197Multiple particle production is also implemented.
198
199The pion absorption channels are
200$\pi^{+}$nn $\rightarrow$ pn, $\pi^{+}$pn $\rightarrow$ pp,
201$\pi^{0}$nn $\rightarrow$ nn, $\pi^{0}$pn $\rightarrow$ pn,
202$\pi^{0}$pp $\rightarrow$ pp, $\pi^{-}$pn $\rightarrow$ nn , and
203$\pi^{-}$pp $\rightarrow$ pn.
204
205\subsection{Pre-equilibrium Model}
206
207The {\sc Geant4} cascade model implements the exciton model proposed by
208Griffin \cite{griffin66, griffin67}.  In this model, nucleon states are
209characterized by the number of excited particles and holes (the excitons).
210Intra-nuclear cascade collisions give rise to a sequence of states
211characterized by increasing exciton number, eventually leading to an
212equilibrated nucleus.  For a practical implementation of the exciton model
213we use parameters from \cite{ribansky73}, (level densities)
214and \cite{kalbach78} (matrix elements).
215
216In the exciton model the possible selection rules for particle-hole
217configurations in the source of the cascade are:
218$\Delta p = 0, \pm 1$  $\Delta h = 0, \pm 1$  $\Delta n = 0, \pm 2$,
219where $p$ is the number of particles, $h$ is number of holes and $n = p + h$ 
220is the number of excitons.
221
222The cascade pre-equilibrium model uses target excitation data and the 
223exciton configurations for neutrons and protons to produce non-equilibrium
224evaporation.  The angular distribution is isotropic in the rest frame of the
225exciton system.
226
227Parameterizations of the level density are tabulated as functions of $A$ and
228$Z$, and with high temperature behavior (the nuclear binding energy using
229the smooth liquid high energy formula).
230
231\subsection{Break-up models}
232
233Fermi break-up is allowed only in some extreme cases, i.e. for light nuclei
234($A < 12$ and  $3 (A - Z) < Z < 6$ ) and $E_{excitation} > 3 E_{binding}$.
235A simple explosion model decays the nucleus into neutrons and protons and
236decreases exotic evaporation processes.
237
238The fission model is phenomenological, using potential minimization. A binding
239energy paramerization is used and
240some features of the fission statistical model are incorporated \cite{fong69}.
241
242\subsection{Evaporation Model}
243
244A statistical theory for particle emission of the excited nucleus remaining
245after the intra-nuclear cascade was originally developed by
246Weisskopf \cite{weisskopf37}.  This model assumes complete energy
247equilibration before particle emission, and re-equilibration of excitation
248energies between successive evaporations.
249As a result the angular distribution of emitted particles is isotropic.
250
251The {\sc Geant4} evaporation model for the cascade implementation adapts the
252often-used computational method developed by
253Dostrowski \cite{dostrovsky59, dostrovsky60}.  The emission of particles is
254computed until the excitation energy falls below some specific cutoff.
255If a light nucleus is highly excited, the Fermi break-up model is executed.
256Also, fission is performed if that channel is open.  The main chain of
257evaporation is followed until $E_{excitation}$ falls below
258E$_{cutoff}$ = 0.1 MeV.  The evaporation model ends with an emission chain
259which is followed until $E_{excitation} < E^{\gamma}_{cutoff} = 10^{-15}$ MeV.
260
261\section{Implementation}
262
263The cascade model is implemented in the {\sc Geant4} hadronic physics
264framework.  All the models are used collectively through the interface
265method {\it Apply\-Yourself} defined in the class {\it G4Cascade\-Interface}.
266A {\sc Geant4} track ({\it G4Track}) and a nucleus ({\it G4Nucleus}) are given
267as parameters.
268
269The cascade models were first tested in release {\sc Geant4 5.0} for energies
270100~MeV -- 5~GeV.  Detailed comparisons with experimental data have been made
271in the energy range 160 -- 800 MeV.
272
273\section{Status of this document}
274
27501.12.02 created by Aatos Heikkinen, Nikita Stepanov and Hans-Peter Wellisch \\
27614.06.05 grammar, spelling check and list of pion absorption channels
277         corrected by D.H. Wright \\
278
279\begin{latexonly}
280
281\begin{thebibliography}{99}
282
283\bibitem{alsmiller90}
284  R.G. Alsmiller and F.S. Alsmiller and O.W. Hermann,
285  The high-energy transport code HETC88 and comparisons with experimental data,
286  Nuclear Instruments and Methods in Physics Research A 295,
287   (1990), 337--343,
288
289% [1] Barashenkov V.S., Toneev V.D. High Energy interactions of particles and nuclei with nuclei. Moscow, 1972
290%(in Russian, but there is an English translation))
291
292\bibitem{barashenkov72}
293 V.S. Barashenkov and V.D. Toneev,
294 High Energy interactions of particles and nuclei with nuclei (In russian),
295 (1972)
296
297\bibitem{bertini68}     
298 M. P. Guthrie, R. G. Alsmiller and H. W. Bertini,
299Nucl. Instr. Meth,
30066,
301 1968,
302 29.                             
303% \bibitem{bertini69}
304%  H.W.Bertini,
305%  Intranuclear-Cascade Calculation of the Secondary Nucleon Spectra from Nucleon-Nucleus
306%         Interactions in the Energy Range 340 to 2900 MeV and Comparisons with Experiment,
307% Phys. Rev.,
308%  188,
309%  1969,
310%  1711
311%
312\bibitem{bertini71}     
313H. W. Bertini and P. Guthrie,
314Results from Medium-Energy Intranuclear-Cascade Calculation,
315Nucl. Phys.A169,
316(1971).
317
318\bibitem{dostrovsky59}
319         I. Dostrovsky, Z. Zraenkel and G. Friedlander,
320         Monte carlo calculations of high-energy nuclear interactions. III. Application to low-lnergy calculations,
321         Physical Review,
322         1959,
323         116,
324         3,
325         683-702.
326
327\bibitem{dostrovsky60}
328         I. Dostrovsky and Z. Fraenkel and P. Rabinowitz,
329         Monte Carlo Calculations of Nuclear Evaporation Processes. V. Emission of Particles Heavier Than $^4He$,
330         Physical Review,
331         1960.
332
333\bibitem{fong69}
334 P. Fong,
335 Statistical Theory of Fission,
336 1969, Gordon and Breach, New York.
337
338\bibitem{geant4collaboration03}
339 Geant4 collaboration,
340 Geant4 general paper (to be published),
341Nuclear Instruments and Methods A,
342(2003).
343
344\bibitem{goldberger48} 
345 M. Goldberger,
346 The Interaction of High Energy Neutrons and Hevy Nuclei,
347Phys. Rev. 74,
348 (1948),
349 1269.
350 
351\bibitem{griffin66}     
352 J. J. Griffin,
353 Statistical Model of Intermediate Structure,
354Physical Review Letters 17, (1966), 478-481.
355
356\bibitem{griffin67}     
357 J. J. Griffin,
358 Statistical Model of Intermediate Structure,
359Physics Letters 24B, 1 (1967), 5-7.
360
361\bibitem{iljinov94}
362 A. S. Iljonov et al.,
363 Intermediate-Energy Nuclear Physics,
364 CRC Press 1994.
365
366\bibitem{kalbach78}     
367 C. Kalbach,
368 Exciton Number Dependence of the Griffin Model Two-Body Matrix Element,
369Z. Physik A 287, (1978), 319-322.
370
371\bibitem{letaw83}
372         J. R. Letaw et al.,
373         The Astrophysical Journal Supplements 51,
374         (1983),
375         271f.
376
377\bibitem{letaw93}
378         J. R. Letaw et al.,
379         The Astrophysical Journal 414,
380         1993,
381         601.
382
383\bibitem{metropolis58}
384         N. Metropolis, R. Bibins, M. Storm,
385         Monte Carlo Calculations on Intranuclear Cascades. I. Low-Energy Studies,
386         Physical Review 110,
387         (1958),
388         185ff.
389
390\bibitem{pearlstein89}
391         S. Pearlstein,
392         Medium-energy nuclear data libraries: a case study, neutron- and
393         proton-induced reactions in $^56$Fe,
394         The Astrophysical Journal 346,
395         (1989),
396         1049-1060.
397
398\bibitem{ribansky73}   
399 I. Ribansky et al.,
400 Pre-equilibrium decay and the exciton model,
401Nucl. Phys. A 205,
402 (1973),
403 545-560.
404
405\bibitem{serber47}     
406 R. Serber,
407 Nuclear Reactions at High Energies,
408Phys. Rev. 72,
409 (1947),
410 1114.
411
412\bibitem{titarenko99a}
413 Experimental and Computer Simulations Study of
414                  Radionuclide Production in Heavy Materials
415                  Irradiated by Intermediate Energy Protons,             
416 Yu. E. Titarenko et al.,
417nucl-ex/9908012,
418 (1999).
419
420\bibitem{weisskopf37}
421         V. Weisskopf,
422          Statistics and Nuclear Reactions,
423       Physical Review 52,
424           (1937),
425          295--302.
426         
427\end{thebibliography}
428
429\end{latexonly}
430
431\begin{htmlonly}
432
433\section{Bibliography}
434
435\begin{enumerate}
436\item
437  R.G. Alsmiller and F.S. Alsmiller and O.W. Hermann,
438  The high-energy transport code HETC88 and comparisons with experimental data,
439  Nuclear Instruments and Methods in Physics Research A 295,
440   (1990), 337--343,
441
442% [1] Barashenkov V.S., Toneev V.D. High Energy interactions of particles and nuclei with nuclei. Moscow, 1972
443%(in Russian, but there is an English translation))
444
445\item
446 V.S. Barashenkov and V.D. Toneev,
447 High Energy interactions of particles and nuclei with nuclei (In russian),
448 (1972)
449
450\item   
451 M. P. Guthrie, R. G. Alsmiller and H. W. Bertini,
452Nucl. Instr. Meth,
45366,
454 1968,
455 29.                             
456% \bibitem{bertini69}
457%  H.W.Bertini,
458%  Intranuclear-Cascade Calculation of the Secondary Nucleon Spectra from Nucleon-Nucleus
459%         Interactions in the Energy Range 340 to 2900 MeV and Comparisons with Experiment,
460% Phys. Rev.,
461%  188,
462%  1969,
463%  1711
464%
465\item     
466H. W. Bertini and P. Guthrie,
467Results from Medium-Energy Intranuclear-Cascade Calculation,
468Nucl. Phys.A169,
469(1971).
470
471\item
472         I. Dostrovsky, Z. Zraenkel and G. Friedlander,
473         Monte carlo calculations of high-energy nuclear interactions. III. Application to low-lnergy calculations,
474         Physical Review,
475         1959,
476         116,
477         3,
478         683-702.
479
480\item
481         I. Dostrovsky and Z. Fraenkel and P. Rabinowitz,
482         Monte Carlo Calculations of Nuclear Evaporation Processes. V. Emission of Particles Heavier Than $^4He$,
483         Physical Review,
484         1960.
485
486\item
487 P. Fong,
488 Statistical Theory of Fission,
489 1969, Gordon and Breach, New York.
490
491\item
492 Geant4 collaboration,
493 Geant4 general paper (to be published),
494Nuclear Instruments and Methods A,
495(2003).
496
497\item 
498 M. Goldberger,
499 The Interaction of High Energy Neutrons and Hevy Nuclei,
500Phys. Rev. 74,
501 (1948),
502 1269.
503 
504\item     
505 J. J. Griffin,
506 Statistical Model of Intermediate Structure,
507Physical Review Letters 17, (1966), 478-481.
508
509\item     
510 J. J. Griffin,
511 Statistical Model of Intermediate Structure,
512Physics Letters 24B, 1 (1967), 5-7.
513
514\item
515 A. S. Iljonov et al.,
516 Intermediate-Energy Nuclear Physics,
517 CRC Press 1994.
518
519\item     
520 C. Kalbach,
521 Exciton Number Dependence of the Griffin Model Two-Body Matrix Element,
522Z. Physik A 287, (1978), 319-322.
523
524\item
525         J. R. Letaw et al.,
526         The Astrophysical Journal Supplements 51,
527         (1983),
528         271f.
529
530\item
531         J. R. Letaw et al.,
532         The Astrophysical Journal 414,
533         1993,
534         601.
535
536\item
537         N. Metropolis, R. Bibins, M. Storm,
538         Monte Carlo Calculations on Intranuclear Cascades. I. Low-Energy Studies,
539         Physical Review 110,
540         (1958),
541         185ff.
542
543\item
544         S. Pearlstein,
545         Medium-energy nuclear data libraries: a case study, neutron- and
546         proton-induced reactions in $^56$Fe,
547         The Astrophysical Journal 346,
548         (1989),
549         1049-1060.
550
551\item   
552 I. Ribansky et al.,
553 Pre-equilibrium decay and the exciton model,
554Nucl. Phys. A 205,
555 (1973),
556 545-560.
557
558\item     
559 R. Serber,
560 Nuclear Reactions at High Energies,
561Phys. Rev. 72,
562 (1947),
563 1114.
564
565\item
566 Experimental and Computer Simulations Study of
567                  Radionuclide Production in Heavy Materials
568                  Irradiated by Intermediate Energy Protons,             
569 Yu. E. Titarenko et al.,
570nucl-ex/9908012,
571 (1999).
572
573\item
574         V. Weisskopf,
575          Statistics and Nuclear Reactions,
576       Physical Review 52,
577           (1937),
578          295--302.
579         
580\end{enumerate}
581
582\end{htmlonly}
583
584         
Note: See TracBrowser for help on using the repository browser.