source: trunk/documents/UserDoc/UsersGuides/PhysicsReferenceManual/latex/hadronic/theory_driven/ChiralInvariantPhaseSpace/CHIPS.tex @ 1214

Last change on this file since 1214 was 1208, checked in by garnier, 15 years ago

CVS update

File size: 107.3 KB
Line 
1%\documentclass[12pt,a4paper,oneside]{book}
2%\usepackage[dvips]{graphicx}
3%\usepackage{html}
4%%% \usepackage[dvips]{epsfig}
5%\title{Physics Reference Manual}
6%\pagestyle{plain}
7%\begin{document}
8%{
9%\maketitle
10%\pagestyle {empty}
11%\setcounter{page}{-10}
12%\tableofcontents
13%\setcounter{page}{-0}
14%\pagestyle {empty}
15%}
16%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17
18\chapter{Chiral Invariant Phase Space Decay.}
19% \textheight 8.75in
20% \textwidth 6.5in
21% \parskip 1.45ex
22
23\newtheorem{theorem}{Theorem}
24\newtheorem{acknowledgement}[theorem]{Acknowledgement}
25\newtheorem{algorithm}[theorem]{Algorithm}
26\newtheorem{axiom}[theorem]{Axiom}
27\newtheorem{claim}[theorem]{Claim}
28\newtheorem{conclusion}[theorem]{Conclusion}
29\newtheorem{condition}[theorem]{Condition}
30\newtheorem{conjecture}[theorem]{Conjecture}
31\newtheorem{corollary}[theorem]{Corollary}
32\newtheorem{criterion}[theorem]{Criterion}
33\newtheorem{definition}[theorem]{Definition}
34\newtheorem{example}[theorem]{Example}
35\newtheorem{exercise}[theorem]{Exercise}
36\newtheorem{lemma}[theorem]{Lemma}
37\newtheorem{notation}[theorem]{Notation}
38\newtheorem{problem}[theorem]{Problem}
39\newtheorem{proposition}[theorem]{Proposition}
40\newtheorem{remark}[theorem]{Remark}
41\newtheorem{solution}[theorem]{Solution}
42\newtheorem{summary}[theorem]{Summary}
43
44% \title{Manual for the CHIPS event generator in GEANT4}
45%\author{M.V.Kossov}
46%\address{Mikhail.Kossov@itep.ru, Mikhail.Kossov@cern.ch, kossov@jlab.org,\\
47%kossov@post.kek.jp}
48% \date{\today}
49% \maketitle
50
51\section{Introduction}
52
53\noindent \qquad 
54The CHIPS computer code is a quark-level event generator for the
55fragmentation of hadronic systems into hadrons.  In contrast to other parton
56models \cite{Parton_Models} CHIPS is nonperturbative and
57three-dimensional. It is based on the Chiral Invariant Phase Space
58(ChIPS) model \cite{CHIPS1,CHIPS2,CHIPS3} which employs a
593D quark-level SU(3) approach. Thus Chiral Invariant Phase Space refers
60to the phase space of massless partons and hence only light (u, d, s)
61quarks can be considered. The c, b, and t quarks are not implemented
62in the model directly, while they can be created in the model as a
63result of the gluon-gluon or photo-gluon fusion. The main parameter of
64the CHIPS model is the critical temperature $T_c\approx 200~MeV$. The
65probability of finding a quark with energy $E$ drops with the energy
66approximately as $e^{-E/T}$, which is why the heavy flavors of quarks
67are suppressed in the Chiral Invariant Phase Space. The s quarks,
68which have masses less then the critical temperature, have an
69effective suppression factor in the model.
70
71The critical temperature $T_c$ defines the number of 3D partons in
72the hadronic system with total energy $W$. If masses of all partons
73are zero then the number of partons can be found from the equation
74$W^2=4T_c^2(n-1)n$. The mean squared total energy can be calculated
75for any ``parton'' mass (partons are usually massless). The
76corresponding formula can be found in \cite{hadronMasses}. In this
77treatment the masses of light hadrons are fitted better than by the
78chiral bag model of hadrons~\cite{Chiral_Bag} with the same number of
79parameters. In both models any hadron consists of a few quark-partons,
80but in the CHIPS model the critical temperature defines the mass of
81the hadron, consisting of $N$ quark-partons, while in the bag
82model the hadronic mass is defined by the balance between the
83quark-parton internal pressure (which according to the uncertainty
84principle increases when the radius of the ``bag'' decreases) and the
85external pressure ($B$) of the nonperturbative vacuum, which has
86negative energy density.
87
88In CHIPS the interactions between hadrons are defined by the Isgur
89quark-exchange diagrams, and the decay of excited hadronic
90systems in vacuum is treated as the fusion of quark-antiquark or
91quark-diquark partons. An important feature of the model is the
92homogeneous distribution of asymptotically free quark-partons over the
93invariant phase space, as applied to the fragmentation of various
94types of excited hadronic systems. In this sense the CHIPS model may
95be considered as a generalization of the well-known hadronic phase
96space distribution \cite{GENBOD} approach, but it generates not only
97angular and momentum distributions for a given set of hadrons, but
98also the multiplicity distributions for different kinds of hadrons,
99which is defined by the multistep energy dissipation (decay) process. 
100
101The CHIPS event generator may be applied to nucleon excitations,
102hadronic systems produced in $e^{+}e^{-}$ and $p\bar p$ annihilation,
103and high energy nuclear excitations, among others. Despite its quark
104nature, the nonperturbative CHIPS model can also be used successfully
105at very low energies. It is valid for photon and hadron projectiles
106and for hadron and nuclear targets. Exclusive event generation models
107multiple hadron production, conserving energy, momentum, and other
108quantum numbers. This generally results in a good description of
109particle multiplicities, inclusive spectra, and kinematic correlations
110in multihadron fragmentation processes. Thus, it is possible to use
111the CHIPS event generator in exclusive modeling of hadron cascades in
112materials.
113
114In the CHIPS model, the result of a hadronic or nuclear interaction is
115the creation of a quasmon which is essentially an intermediate state
116of excited hadronic matter.  When the interaction occurs in vacuum the
117quasmon can dissipate energy by radiating particles according to the
118quark fusion mechanism~\cite{CHIPS1} described in section \ref{annil}.
119When the interaction occurs in nuclear matter, the energy dissipation
120of a quasmon can be the result of quark exchange with surrounding
121nucleons or clusters of nucleons \cite{CHIPS2} (section \ref{picap}),
122in addition to the vacuum quark fusion mechanism.
123
124In this sense the CHIPS model can be a successful competitor of the
125cascade models, because it does not break the projectile, instead it
126captures it, creating a quasmon, and then decays the quasmon in
127nuclear matter. The perturbative mechanisms in deep inelastic
128scattering are in some sense similar to the cascade calculations,
129while the parton splitting functions are used instead of
130interactions. The nonperturbative CHIPS approach is making a ``short
131cut'' for the perturbative calculations too. Similar to the time-like
132$s=W^2$ evolution of the number of partons in the nonperturbative
133chiral phase space (mentioned above) the space-like $Q^2$ evolution of
134the number of partons is given by $N(Q^2)=n_V+\frac{1}{2\alpha_s(Q^2)}$,
135where $n_V$ is the number of valence quark-partons. The running
136$\alpha_s(Q^2)$ value is calculated in CHIPS as
137$\alpha_s(Q^2)=\frac{4\pi}{\beta_0ln(1+Q^2/T_c^2)}$, where
138$\beta_0^{n_f=3)=9}$. In other words, the critical temperature $T_c$
139plays the role of $\Lambda_QCD$ and still cuts out heavy flavors of
140quark-partons and high orders of the QCD calculation (NLO, NNLO,
141N$^3$LO, etc.), substituting for them the effective LO ``short cut''.
142This simple approximation of $\alpha_s$ fits all the present measurements
143of this value (Fig.~\ref{alphas}).
144It is very important that
145$\alpha_s$ is defined in CHIPS for any $Q^2$, and that the number of partons
146at $Q^2=0$ converges to the number of valence quarks.
147
148\begin{figure}
149% \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/mommul.eps, height=3.5in, width=4.5in}}
150%  \resizebox{1.00\textwidth}{!}
151%{
152\includegraphics[angle=0,scale=0.6]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/alpha.eps}
153%\includegraphics[angle=0,scale=0.6]{plots/alpha.eps}
154%}
155\caption{The CHIPS fit of the $\alpha_s$ measurements.}
156\label{alphas}
157\end{figure}
158
159The effective $\alpha_s$ is defined for all $Q^2$, but at $Q^2=0$ it
160is infinite. In other words at $Q^2=0$ the number of the virtual
161interacting partons goes to infinity.  This means that on the boundary
162between perturbative and non-perturbative vacuums a virtual
163``thermostate'' of gluons with an effective temperature $T_c$
164exists. This ``virtual thermostate'' defines the phase space
165distribution of partons, and the ``thermalization'' can happen very
166quickly. On the other hand, the CHIPS nonperturbative approach can be used
167below $Q^2~=~1~GeV^2$. This was done for the neutrino-nuclear
168interactions  (section \ref{numunuc}).
169
170\section{Fundamental Concepts}
171
172The CHIPS model is an attempt to use a set of simple rules which govern
173microscopic quark-level behavior to model macroscopic hadronic systems with
174a large number of degrees of freedom. The invariant phase space distribution
175as a paradigm of thermalized chaos is applied to quarks, and simple
176kinematic mechanisms are used to model the hadronization of quarks into
177hadrons. Along with relativistic kinematics and the conservation of quantum
178numbers, the following concepts are used:
179
180\begin{itemize}
181\item {\bf Quasmon:} in the CHIPS model, a quasmon is any excited hadronic
182system; it can be viewed as a continuous spectrum of a generalized
183hadron.  At the constituent level, a quasmon may be thought of as a
184bubble of quark-parton plasma in which the quarks are massless and the
185quark-partons in the quasmon are homogeneously distributed over the
186invariant phase space.  It may also be considered as a bubble of the
187three-dimensional Feynman-Wilson \cite{Feynman-Wilson} parton gas. The
188traditional hadron is a particle defined by quantum numbers and a
189fixed mass or a mass with a width. The quark content of the hadron is
190a secondary concept constrained by the quantum numbers. The quasmon,
191however, is defined by its quark content and its mass, and the concept
192of a well defined particle with quantum numbers (a discrete spectrum)
193is of secondary importance. A given quasmon hadronic state with fixed
194mass and quark content can be considered as a superposition of
195traditional hadrons, with the quark content of the superimposed
196hadrons being the same as the quark content of the quasmon.
197
198\item {\bf Quark fusion:} the quark fusion hypothesis determines the rules
199of final state hadron production, with energy spectra reflecting the
200momentum distribution of the quarks in the system. Fusion occurs when a
201quark-parton in a quasmon joins with another quark-parton from the same
202quasmon and forms a new white hadron, which can be radiated. If a
203neighboring nucleon (or the nuclear cluster) is present, quark-partons
204may also be exchanged between the quasmon and the neighboring nucleon
205(cluster). The kinematic condition applied to these mechanisms is that
206the resulting hadrons are produced on their mass shells. The model
207assumes that the u, d and s quarks are effectively massless, which
208allows the integrals of the hadronization process to be done easily
209and the modeling decay algorithm to be accelerated. The quark mass is
210taken into account indirectly in the masses of outgoing hadrons. The
211type of the outgoing hadron is selected using combinatoric and
212kinematic factors consistent with conservation laws.  In the present
213version of CHIPS all mesons with three-digit PDG Monte Carlo codes
214\cite{CH.PDG} up to spin $4$, and all baryons with four-digit PDG
215codes up to spin $\frac{7}{2}$ are implemented.
216
217\item {\bf Critical temperature} the only non-kinematic concept of the model
218is the hypothesis of the critical temperature of the quasmon. This has a
21940-year history, starting with Ref.~\cite{Hagedorn} and is based on the
220experimental observation of regularities in the inclusive spectra of hadrons
221produced in different reactions at high energies.  Qualitatively, the
222hypothesis of a critical temperature assumes that the quark-gluon hadronic
223system (quasmon) cannot be heated above a certain temperature.  Adding more
224energy to the hadronic system increases only the number of constituent
225quark-partons while the temperature remains constant.  The critical
226temperature is the principal parameter of the model and is used to
227calculate the number of quark-partons in a quasmon.  In an infinite
228thermalized system, for example, the mean energy of partons is $2T$
229per particle, the same as for the dark body radiation. 
230
231\end{itemize}
232
233\section{Code Development}
234
235Because the CHIPS event generator was originally developed only for final
236state hadronic fragmentation, the initial interaction of projectiles with
237targets requires further development.  Hence, the first applications of
238CHIPS described interactions at rest, for which the interaction cross
239section is not important \cite{CHIPS1}, \cite{CHIPS2}, and low energy
240photonuclear reactions \cite{CHIPS3}, for which the interaction cross
241section can be calculated easily \cite{photNuc}. With modification of
242the first interaction algorithm the CHIPS event generator can be used
243for all kinds of hadronic interaction. The Geant4 String Model
244interface to the CHIPS generator \cite{GEANT4}, \cite{MC2000} also
245makes it possible to use the CHIPS code for nuclear fragmentation at
246extremely high energies.
247
248In the first published versions of the CHIPS event generator the class
249{\tt G4Quasmon} was the head of the model and all initial interactions
250were hidden in its constructor.  More complicated applications of the
251model such as anti-proton nuclear capture at rest and the Geant4
252String Model interface to CHIPS led to the multi-quasmon version of
253the model.  This required a change in the structure of the CHIPS event
254generator classes.  In the case of at-rest anti-proton annihilation in
255a nucleus, for example, the first interaction occurs on the nuclear
256periphery. After this initial interaction, a fraction (defined by a
257special parameter of the model) of the secondary mesons independently
258penetrate the nucleus.  Each of these mesons can create a separate
259quasmon in the interior of the nucleus. In this case the class {\tt
260G4Quasmon} can no longer be the head of the model. A new head class,
261{\tt G4QEnvironment}, was developed which can adopt a vector of
262projectile hadrons ({\tt G4QHadronVector}) and create a vector of
263quasmons, {\tt G4QuasmonVector}. All newly created quasmons then begin
264the energy dissipation process in parallel in the same nucleus. The
265{\tt G4QEnvironment} instance can be used both for vacuum and for nuclear
266matter.  If {\tt G4QEnvironment} is created in vacuum, it is practically
267identical to the {\tt G4Quasmon} class, because in this case only one
268instance of {\tt G4Quasmon} is allowed.  This leaves the model unchanged
269for hadronic interactions.
270
271The convention adopted for the CHIPS model requires all its class names
272to use the prefix {\tt G4Q} in order to distinguish them from other Geant4
273classes, most of which use the {\tt G4} prefix. The intent is that the
274{\tt G4Q} prefix will not be used by other Geant4 projects.
275
276\section{Nucleon-Antinucleon Annihilation at Rest} \label{annil}
277
278In order to generate hadron spectra from the annihilation of a proton
279with an anti-proton at rest, the number of partons in the system must be
280found. For a finite system of $N$ partons with a total center-of-mass energy
281$M$, the invariant phase space integral, $\Phi_N$, is proportional to
282$M^{2N-4}$.  According to the dimensional counting rule, $2N$ comes from
283$\prod\limits_{i=1}^{N}\frac{d^{3}p_{i}}{E_{i}}$, and $4$ comes from
284the energy and momentum conservation function, $\delta ^{4}($\b{P}$-\sum
285$\b{p}$_{i})$.  At a temperature $T$ the statistical density of states is
286proportional to $e^{-\frac{M}{T}}$ so that the probability to find a system
287of $N$ quark-partons in a state with mass $M$ is $dW \propto
288M^{2N-4}e^{-\frac{M}{T}}dM$.  For this kind of probability distribution the
289mean value of $M^{2}$ is
290\begin{equation}
291<M^{2}>=4N(N-1)\cdot T^{2}\label{temperature}
292\end{equation}
293When $N$ goes to infinity one obtains for massless particles the
294well-known $<M>\equiv \sqrt{<M^{2}>}=2NT$ result.
295
296After a nucleon absorbs an incident quark-parton, such as a real or
297virtual photon, for example, the newly formed quasmon has a total of $N$ 
298quark-partons, where $N$ is determined by Eq. \ref{temperature}.
299Choosing one of these quark-partons with energy $k$ in the center of mass
300system (CMS) of $N$ partons, the spectrum of the remaining $N-1$ 
301quark-partons is given by
302\begin{equation}
303\frac{dW}{kdk} \propto (M_{N-1})^{2N-6},
304\end{equation}
305where $M_{N-1}$ is the effective mass of the $N-1$ quark-partons.
306This result was obtained by applying the above phase-space relation
307($\Phi_N \propto M^{2N-4}$) to the residual $N-1$ quarks.  The effective
308mass is a function of the total mass $M$,
309\begin{equation}
310M_{N-1}^{2}=M^{2}-2kM ,  \label{m_n-1}
311\end{equation}
312so that the resulting equation for the quark-parton
313spectrum is:
314\begin{equation}
315\frac{dW}{kdk}\propto (1-\frac{2k}{M})^{N-3}\label{spectrum_1}
316\end{equation}
317
318\subsection{Meson Production}
319
320In this section, only the quark fusion mechanism of hadronization is
321considered. The quark exchange mechanism can take place only in
322nuclear matter where a quasmon has neighboring nucleons.  In order to
323decompose a quasmon into an outgoing hadron and a residual quasmon, one
324needs to calculate the probability of two quark-partons combining to
325produce the effective mass of the outgoing hadron.  This requires that
326the spectrum of the second quark-parton be calculated.  This is done by
327following the same argument used to determine Eq.~\ref{spectrum_1}.
328One quark-parton is chosen from the residual $N-1$.  It has an energy
329$q$ in the CMS of the $N-1$ quark-partons.  The spectrum is obtained by
330substituting $N-1$ for $N$ and $M_{N-1}$ for $M$ in
331Eq.~\ref{spectrum_1} and then using Eq.~\ref{m_n-1} to get
332\begin{equation}
333\frac{dW}{q dq }\propto \left( 1-\frac{2q }{M\sqrt{1-
334\frac{2k}{M}}}\right) ^{N-4}\label{spectrum_2}
335\end{equation}
336
337Next, one of the residual quark-partons must be selected from this spectrum
338such that its fusion with the primary quark-parton makes a hadron of
339mass $\mu$.  This selection is performed by the mass shell condition for
340the outgoing hadron,
341\begin{equation}
342\mu^2 = 2 \frac{k}{\sqrt{1-\frac{2k}{M}}} 
343 \cdot q \cdot (1-\cos \theta ) .  \label{hadron}
344\end{equation}
345Here $\theta$ is the angle between the momenta, {\bf k} and {\bf q} of
346the two quark-partons in the CMS of $N-1$ quarks.  Now the kinematic quark
347fusion probability can be calculated for any primary quark-parton with
348energy $k$:
349\begin{eqnarray}
350P(k,M,\mu )=&&\int \left( 1-\frac{2q }{M\sqrt{1-\frac{2k}{M}}}\right)
351^{N-4} \nonumber\\
352 && \times\  \delta \left( \mu ^{2}-\frac{2kq (1-\cos \theta )}{\sqrt{1-
353\frac{2k}{M}}}\right) q dq d\cos \theta .\ \ \ \
354\end{eqnarray}
355Using the $\delta$-function\footnote{\protect{
356If $g(x_0)$=0, $\int f(x)\delta\left[g(x)\right]dx = 
357\int \frac{f(x)\delta\left[g(x)\right]}{g^\prime(x)} dg(x) = 
358\frac{f(x_0)}{g^\prime(x_0)}$
359}}
360to perform the integration over $q$ one gets:
361\begin{eqnarray}
362P(k,M,\mu )=&&\int \left( 1-\frac{\mu ^{2}}{Mk(1-\cos \theta )}\right)
363^{N-4} \nonumber\\
364 && \times\ \left( \frac{\mu ^{2}\sqrt{1-\frac{2k}{M}}}{2k(1-\cos \theta )}
365\right)^{2}d\left(\frac{1-\cos \theta }{\mu ^{2}}\right) ,\ \
366\end{eqnarray}
367or
368\begin{eqnarray}
369P(k,M,\mu )=&&\frac{M-2k}{4k}\int \left(1-\frac{\mu ^{2}}{Mk(1 -
370\cos\theta)}\right) ^{N-4} \nonumber\\
371 && \times\ d\left(1-\frac{\mu ^{2}}{Mk(1-\cos \theta )}\right).
372\end{eqnarray}
373After the substitution
374$z=1-\frac{2q }{M_{N-1}}=1-\frac{\mu ^{2}}{Mk(1-\cos \theta )}$, this
375becomes
376\begin{equation}
377P(k,M,\mu ) = \frac{M-2k}{4k} \int z^{N-4} dz ,
378\end{equation}
379where the limits of integration are $0$ when
380$\cos\theta = 1 - \frac{\mu ^{2}}{M\cdot k}$, and
381\begin{equation}
382z_{\max }=1-\frac{\mu^2}{2Mk}, \label{z_max}
383\end{equation}
384when $\cos \theta =-1$.  The resulting range of $\theta$\ is therefore
385$-1<\cos \theta < 1-\frac{\mu ^{2}}{M\cdot k}$.  Integrating from $0$ to
386$z$ yields
387\begin{equation}
388\frac{M-2k}{4k\cdot (N-3)}\cdot z^{N-3}\label{z_probab}
389\end{equation}
390and integrating from $0$ to $z_{max}$ yields the total kinematic
391probability for hadronization of a quark-parton with energy $k$ into a
392hadron with mass $\mu$:
393\begin{equation}
394\frac{M-2k}{4k \cdot (N-3)} \cdot z_{\max}^{N-3} .
395                                   \label{tot_kin_probab}
396\end{equation}
397The ratio of expressions \ref{z_probab} and \ref{tot_kin_probab} can be
398treated as a random number, $R$, uniformly distributed on the interval
399[0,1].  Solving for $z$ then gives
400\begin{equation}
401z=\sqrt[N-3]{R}\cdot z_{\max }\label{z_random}
402\end{equation}
403
404In addition to the kinematic selection of the two quark-partons in the
405fusion process, the quark content of the quasmon and the spin of the
406candidate final hadron are used to determine the probability that a
407given type of hadron is produced.  Because only the relative hadron
408formation probabilities are necessary, overall normalization factors can
409be dropped.  Hence the relative probability can
410be written as
411\begin{equation}
412P_h(k,M,\mu )=(2s_h+1)\cdot z_{\max }^{N-3}\cdot C_{Q}^{h} . 
413                                         \label{rel_prob}
414\end{equation}
415Here, only the factor $z_{\max }^{N-3}$ is used since the other factors
416in equation \ref{tot_kin_probab} are constant for all candidates for the
417outgoing hadron.  The factor $2s_h+1$ counts the spin states of a
418candidate hadron of spin $s_h$, and $C_{Q}^{h}$ is the number of ways the
419candidate hadron can be formed from combinations of the quarks within the
420quasmon.  In making these combinations, the standard quark wave functions
421for pions and kaons were used.  For $\eta$ and $\eta^{\prime }$ mesons the
422quark wave functions
423$\eta=\frac{\bar{u}u+\bar{d}d}{2}-\frac{\bar{s}s}{\sqrt{2}}$ and
424$\eta^{\prime }=\frac{\bar{u}u+\bar{d}d}{2}+\frac{\bar{s}s}{\sqrt{2}}$
425were used.  No mixing was assumed for the $\omega $\ and $\phi $\ meson
426states, hence $\omega =\frac{ \bar{u}u+\bar{d}d}{\sqrt{2}}$ and
427$\varphi=\bar{s}s$.
428
429A final model restriction is applied to the hadronization process:
430after a hadron is emitted, the quark content of the residual quasmon
431must have a quark content corresponding to either one or two real
432hadrons.  When the quantum numbers of a quasmon, determined by its quark
433content, cannot be represented by the quantum numbers of a real hadron,
434the quasmon is considered to be a virtual hadronic molecule such as
435$\pi ^{+}\pi ^{+}$ or $K^{+}\pi ^{+}$, in which case it is defined in
436the CHIPS model to be a Chipolino pseudo-particle.
437
438To fuse quark-partons and create the decay of a quasmon into a hadron and
439residual quasmon, one needs to generate randomly the residual quasmon mass
440$m$, which in fact is the mass of the residual $N-2$ quarks.  Using an
441equation similar to \ref{m_n-1}) one finds that
442\begin{equation}
443m^{2}=z\cdot (M^{2}-2kM).  \label{m(z)}
444\end{equation}
445Using Eqs. \ref{z_random} and \ref{z_max}, the mass of the residual
446quasmon can be expressed in terms of the random number $R$:
447\begin{equation}
448m^{2}=(M-2k)\cdot (M-\frac{\mu ^{2}}{2k})\cdot \sqrt[N-3]{R} .
449\label{res_quasmon}
450\end{equation}
451At this point, the decay of the original quasmon into a final state
452hadron and a residual quasmon of mass $m$ has been simulated.  The process
453may now be repeated on the residual quasmon.
454
455This iterative hadronization process continues as long as the residual
456quasmon mass remains greater than $m_{\min }$, whose value depends on the
457type of quasmon.  For hadron-type residual quasmons
458\begin{equation}
459 m_{\min }=m_{\min }^{QC}+m_{\pi ^{0}}\label{m_min}
460\end{equation}
461where $m_{\min }^{QC}$ is the minimum hadron mass for the residual
462quark content (QC).  For Chipolino-type residual quasmons consisting
463of hadrons $h_1$ and $h_2$,
464\begin{equation}
465 m_{\min }=m_{h_1}+m_{h_2}. \label{m_min_chipolino}
466\end{equation}
467These conditions insure that the quasmon always has enough energy to decay
468into at least two final state hadrons, conserving four-momentum and charge.
469
470If the remaining CMS energy of the residual quasmon falls below $m_{\min}$,
471then the hadronization process terminates with a final two-particle decay. 
472If the parent quasmon is a Chipolino consisting of hadrons $h_1$ and $h_2$,
473then a binary decay of the parent quasmon into $m_{h_1}$ and $m_{h_2}$ 
474takes place.  If the parent quasmon is not a Chipolino then a decay into
475$m_{\min}^{QC}$ and $m_h$ takes place.  The decay into $m_{\min}^{QC}$ and
476$m_\pi^0$ is always possible in this case because of condition \ref{m_min}.
477
478If the residual quasmon is not Chipolino-type, and $m>m_{\min}$, the
479hadronization loop can still be finished by the resonance production
480mechanism, which is modeled following the concept of parton-hadron
481duality \cite{Duality}.  If the residual quasmon has a mass in the vicinity
482of a resonance with the same quark content ($\rho$ or $K^{\ast}$ for
483example), there is a probability for the residual quasmon to convert to
484this resonance.\footnote{When comparing quark contents, the quark content
485of the quasmon is reduced by canceling quark-antiquark pairs of the same
486flavor.}
487In the present version of the CHIPS event generator the probability of
488convert to the resonance is given by
489\begin{equation}
490P_{\rm{res}}=\frac{m_{\min }^{2}}{m^{2}}\label{res_probab}
491\end{equation}
492Hence the resonance with the mass-squared value $m_{r}^{2}$ closest to
493$m^{2}$ is selected, and the binary decay of the quasmon into $m_{h}$ 
494and $m_{r}$ takes place.
495
496With more detailed experimental data, it will be possible to take into
497account angular momentum conservation, as well as $C$-, $P$- and
498$G$-parity conservation.  In the present version of the generator, $\eta$ 
499and $\eta ^{\prime }$ are suppressed by a factor of $0.3$.  This factor
500was tuned using data from experiments on antiproton annihilation at rest
501in liquid hydrogen and can be different for other hadronic reactions.  It
502is possible to vary it when describing other reactions.
503
504Another parameter, $s/u$, controls the suppression of heavy quark
505production \cite{JETSET}.  For proton-antiproton annihilation at rest the
506strange quark-antiquark sea was found to be suppressed by the factor
507$s/u = 0.1$.  In the JETSET \cite{JETSET} event generator, the default
508value for this parameter is $s/u = 0.3$.  The lower value may be due to
509quarks and anti-quarks of colliding hadrons initially forming a non-strange
510sea, with the strange sea suppressed by the OZI rule \cite{OZI}.  This
511question is still under discussion \cite{OZI_violation} and demands further
512experimental measurements.  The $s/u$ parameter may differ for other
513reactions.  In particular, for e$^{+}$e$^{-}$ reactions it can be closer to
5140.3.
515
516Finally, the temperature parameter has been fixed at $T=180$ MeV.  In
517earlier versions of the model it was found that this value successfully
518reproduced spectra of outgoing hadrons in different types of medium-energy
519reactions.
520
521\begin{figure}
522% \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/mommul.eps, height=3.5in, width=4.5in}}
523%  \resizebox{1.00\textwidth}{!}
524%{
525\includegraphics[angle=0,scale=0.6]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/mommul.eps}
526%\includegraphics[angle=0,scale=0.6]{plots/mommul.eps}
527%}
528\caption{(a) (left): momentum distribution of charged pions produced in
529proton-antiproton annihilation at rest.  The experimental data are from
530\protect\cite{pispectrum}, and the histogram was produced by the CHIPS
531Monte Carlo.  The experimental spectrum is normalized to the measured
532average charged pion multiplicity, 3.0. (b) (right): pion multiplicity
533distribution.  Data points were taken from compilations of experimental
534data \protect\cite{pap_exdata}, and the histogram was produced by the
535CHIPS Monte Carlo.  The number of events with kaons in the final state is
536shown in pion multiplicity bin 9, where no real 9-pion events are
537generated or observed experimentally.  In the model, the percentage of
538annihilation events with kaons is close to the experimental value of
5396\% \cite{pap_exdata}.
540}
541\label{mommul}
542\end{figure}
543
544\begin{figure}
545% \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/channels.eps, height=3.5in, width=4.5in}}
546%  \resizebox{1.00\textwidth}{!}
547%{
548\includegraphics[angle=0,scale=0.6]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/channels.eps}
549%\includegraphics[angle=0,scale=0.6]{plots/channels.eps}
550%}
551\caption{Branching probabilities for different channels in
552proton-antiproton annihilation at rest. The experimental data are from
553\protect\cite {pap_exdata}, and the histogram was produced by the CHIPS
554Monte Carlo. }
555\label{channels}
556\end{figure}
557
558The above parameters were used to fit not only the spectrum of pions
559Fig.~\ref{mommul},a and the multiplicity distribution for pions
560Fig.~\ref{mommul},b but also branching ratios of various measured
561\cite{pispectrum,pap_exdata} exclusive channels as shown in Figs.
562~\ref{channels},~\ref{threechan},~\ref{twochan}.  In Fig.~\ref{twochan} 
563one can see many decay channels with higher meson resonances.  The
564relative contribution of events with meson resonances produced in the
565final state is 30 - 40 percent, roughly in agreement with experiment. The
566agreement between the model and experiment for particular decay modes is
567within a factor of 2-3 except for the branching ratios to higher
568resonances.  In these cases it is not completely clear how the resonance
569is defined in a concrete experiment.  In particular, for the
570$a_{2}\omega $ channel the mass sum of final hadrons is 2100 MeV with a
571full width of about 110 MeV while the total initial energy of the p\={p} 
572annihilation reaction is only 1876.5 MeV.  This decay channel can be
573formally simulated by an event generator using the tail of the Breit-Wigner
574distribution for the $a_{2}$ resonance, but it is difficult to imagine how
575the $a_{2}$ resonance can be experimentally identified $2\Gamma $ away
576from its mean mass value.
577
578\subsection{Baryon Production}
579
580To model fragmentation into baryons the POPCORN idea \cite{POPCORN} was
581used, which assumes the existence of diquark-partons.  The assumption of
582massless diquarks is somewhat inconsistent at low energies, as is the
583assumption of massless s-quarks, but it is simple and it helps to generate
584baryons in the same way as mesons.
585
586Baryons are heavy, and the baryon production in $p\bar p$ annihilation
587reactions at medium energies is very sensitive to the value of the
588temperature. If the temperature is low, the baryon yield is small, and
589the mean multiplicity of pions increases very noticeably with center-of-mass
590energy as seen in Fig.~\ref{apcmul}.  For higher temperature values the baryon
591yield reduces the pion multiplicity at higher energies.  The existing
592experimental data \cite{Energy_Dep}, shown in Fig.~\ref{apcmul}, can be
593considered as a kind of ``thermometer'' for the model.  This thermometer
594confirms that the critical temperature is about 200 MeV.
595
596\begin{figure}
597% \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/threechn.eps, height=4.5in, width=4.5in}}
598%  \resizebox{1.00\textwidth}{!}
599%{
600\includegraphics[angle=0,scale=0.6]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/threechn.eps}
601%\includegraphics[angle=0,scale=0.6]{plots/threechn.eps}
602%}
603\caption{Branching probabilities for different channels with
604three-particle final states in proton-antiproton annihilation at
605rest.  The points are experimental data \protect\cite{pap_exdata} and the
606histogram is from the CHIPS Monte Carlo. }
607\label{threechan}
608\end{figure}
609\begin{figure}
610% \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/twochn.eps, height=4.5in, width=4.5in}}
611%  \resizebox{1.00\textwidth}{!}
612%{
613\includegraphics[angle=0,scale=0.6]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/twochn.eps}
614%\includegraphics[angle=0,scale=0.6]{plots/twochn.eps}
615%}
616\caption{Branching probabilities for different channels with
617two-particle final states in proton-antiproton annihilation at
618rest. The points are experimental data \protect\cite{pap_exdata} and the
619histogram is from the CHIPS Monte Carlo. }
620\label{twochan}
621\end{figure}
622\begin{figure}
623% \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/apcmul.eps, height=4.5in, width=4.5in}}
624%  \resizebox{1.00\textwidth}{!}
625%{
626\includegraphics[angle=0,scale=0.6]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/apcmul.eps}
627%\includegraphics[angle=0,scale=0.6]{plots/apcmul.eps}
628%}
629\caption{Average meson multiplicities in proton-antiproton and in
630electron-positron annihilation, as a function of the center-of-mass energy of
631the interacting hadronic system.  The points are experimental data
632\protect\cite {Energy_Dep} and the lines are CHIPS Monte Carlo calculations
633at several values of the critical temperature parameter $T$. }
634\label{apcmul}
635\end{figure}
636
637It can be used as a tool for the Monte Carlo simulation of a wide variety
638of hadronic reactions.  The CHIPS event generator can be used not only for
639``phase-space background'' calculations in place of the standard GENBOD
640routine \cite{GENBOD}, but even for taking into account the reflection of
641resonances in connected final hadron combinations.  Thus it can be useful
642for physics analysis too, even though its main range of application is the
643simulation of the evolution of hadronic and electromagnetic showers in
644matter at medium energies.
645
646\section{Nuclear Pion Capture at Rest and Photonuclear Reactions Below the
647Delta(3,3) Resonance} \label{picap}
648
649When compared with the first ``in vacuum'' version of the model, described
650in Section \ref{annil}, modeling hadronic fragmentation in nuclear matter
651is more complicated because of the much greater number of possible
652secondary fragments.  However, the hadronization process itself
653is simpler in a way.  In vacuum, the quark-fusion mechanism requires a
654quark-parton partner from the external (as in
655JETSET \cite{JETSET}) or internal (the quasmon itself, Section \ref{annil})
656quark-antiquark sea.  In nuclear matter, there is a second possibility:
657quark exchange with a neighboring hadronic system, which could be a nucleon
658or multinucleon cluster. 
659
660In nuclear matter the spectra of secondary hadrons and nuclear fragments
661reflect the quark-parton energy spectrum within a quasmon.  In the case of
662inclusive spectra that are decreasing steeply with energy, and
663correspondingly steeply decreasing spectra of the quark-partons in a quasmon,
664only those secondary hadrons which get the maximum energy from the primary
665quark-parton of energy $k$ contribute to the inclusive spectra.  This
666extreme situation requires the exchanged quark-parton with energy $q$,
667coming toward the quasmon from the cluster, to move in a direction
668opposite to that of the primary quark-parton.  As a result the
669hadronization quark exchange process becomes one-dimensional along the
670direction of $k$.  If a neighboring nucleon or nucleon cluster with bound
671mass $\tilde{\mu}$ absorbs the primary quark-parton and radiates the
672exchanged quark-parton in the opposite direction, then the energy of the
673outgoing fragment is $E=\tilde{\mu}+k-q$, and the momentum is $p=k+q$.
674Both the energy and the momentum of the outgoing nuclear fragment are known,
675as is the mass $\tilde{\mu}$ of the nuclear fragment in nuclear matter, so
676the momentum of the primary quark-parton can be reconstructed using the
677approximate relation
678\begin{equation}
679k=\frac{p+E-B\cdot m_{N}}{2} .  \label{k}
680\end{equation}
681Here $B$ is the baryon number of the outgoing fragment
682($\tilde{\mu}\approx B\cdot m_{N}$) and $m_N$ is the nucleon mass.  In
683Ref.~\cite{K_parameter} it was shown that the invariant inclusive spectra of
684pions, protons, deuterons, and tritons in proton-nucleus reactions at
685400~GeV \cite{FNAL} not only have the same exponential slope but almost
686coincide when they are plotted as a function of $k=\frac{p+E_{\rm{kin}}}{2}$.
687Using data at 10~GeV \cite{FAS}, it was shown that the parameter $k$, defined
688by Eq.~\ref{k}, is also appropriate for the description of secondary
689anti-protons produced in high energy nuclear reactions.  This means that the
690extreme assumption of one-dimensional hadronization is a good approximation.
691
692The same approximation is also valid for the quark fusion mechanism.  In
693the one-dimensional case, assuming that $q$ is the momentum of the second
694quark fusing with the primary quark-parton of energy $k$, the total energy
695of the outgoing hadron is $E=q+k$ and the momentum is $p=k-q$.  In the
696one-dimensional case the secondary quark-parton must move in the opposite
697direction with respect to the primary quark-parton, otherwise the mass of
698the outgoing hadron would be zero.  So, for mesons $k=\frac{p+E}{2}$, in
699accordance with Eq.~\ref{k}.  In the case of anti-proton radiation, the
700baryon number of the quasmon is increased by one, and the primary
701antiquark-parton will spend its energy to build up the mass of the
702antiproton by picking up an anti-diquark.  Thus, the energy conservation
703law for antiproton radiation looks like $E+m_{N}=q+k$ and
704$k=\frac{p+E+m_{N}}{2}$, which is again in accordance with Eq.~\ref{k}.
705
706The one-dimensional quark exchange mechanism was proposed in 1984
707\cite{K_parameter}.  Even in its approximate form it was useful in the
708analysis of inclusive spectra of hadrons and nuclear fragments in
709hadron-nuclear reactions at high energies.  Later the same approach was
710used in the analysis of nuclear fragmentation in electro-nuclear
711reactions \cite{TPC}.  Also in 1984 the quark-exchange mechanism developed
712in the framework of the non-relativistic quark model was found to be
713important for the explanation of the short distance features of $NN$ 
714interactions \cite{NN QEX}.  Later it was successfully applied to
715$K^{-}p$ interactions \cite{Kp QUEX}.  The idea of the quark exchange
716mechanism between nucleons was useful even for the explanation of the EMC
717effect \cite{EMC}.  For the non-relativistic quark model, the quark
718exchange technique was developed as an alternative to the Feynman diagram
719technique at short distances \cite{QUEX}.
720
721The CHIPS event generator models quark exchange processes, taking into
722account kinematic and combinatorial factors for asymptotically free
723quark-partons.  In the naive picture of the quark-exchange mechanism,
724one quark-parton tunnels from the asymptotically free region of one hadron
725to the asymptotically free region of another hadron.  To conserve color,
726another quark-parton from the neighboring hadron must replace the first
727quark-parton in the quasmon.  This makes the tunneling mutual, and the
728resulting process is quark exchange.
729
730The experimental data available for multihadron production at high energies
731show regularities in the secondary particle spectra that can be related to
732the simple kinematic, combinatorial, and phase space rules of such quark
733exchange and fusion mechanisms.  The CHIPS model combines these mechanisms
734consistently.
735
736\begin{figure}[tbp]
737% \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/diagram.eps, height=2.5in, width=2.5in}}
738%\resizebox{1.00\textwidth}{!}
739%{
740\includegraphics[angle=0,scale=0.6]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/diagram.eps}
741%\includegraphics[angle=0,scale=0.6]{plots/diagram.eps}
742%}
743\caption{Diagram of the quark exchange mechanism. }
744\label{diagram}
745\end{figure}
746
747Fig.~\ref{diagram} shows a quark exchange diagram which helps to keep track
748of the kinematics of the process.  It was shown in Section \ref{annil} that
749a quasmon, $Q$ is kinematically determined by a few asymptotically free
750quark-partons homogeneously distributed over the invariant phase space.  The
751quasmon mass $M$ is related to the number of quark-partons $N$ through
752\begin{equation}
753<M^{2}>=4N(N-1)\cdot T^{2}\label{temperatureII}
754\end{equation}
755where $T$ is the temperature of the system.
756
757The spectrum of quark partons can be calculated as
758\begin{equation}
759\frac{dW}{k^{\ast }dk^{\ast}}\propto 
760 \left(1-\frac{2k^{\ast}}{M} \right)^{N-3}\label{spectrum_1II}
761\end{equation}
762where $k^{\ast}$ is the energy of the primary quark-parton in the
763center-of-mass system of the quasmon.  After the primary quark-parton
764is randomized and the neighboring cluster, or parent cluster, $PC$, with
765bound mass $\tilde{\mu}$\ is selected, the quark exchange process begins.
766To follow the process kinematically one should imagine a colored, compound
767system consisting of a stationary, bound parent cluster and the primary quark.
768The primary quark has energy $k$ in the lab system,
769\begin{equation}
770k=k^{\ast }\cdot \frac{E_{N}+p_{N}\cdot \cos (\theta _{k})}{M_{N}},
771\end{equation}
772where $M_N$, $E_N$ and $p_N$ are the mass, energy, and momentum of the
773quasmon in the lab frame.  The mass of the compound system, $CF$, is
774$\mu _{c}=\sqrt{(\tilde{\mu}+k)^{2}}$, where $\tilde{\mu}$ and $k$ are the
775corresponding four-vectors.  This colored compound system decays into a
776free outgoing nuclear fragment, $F$, with mass $\mu$ and a recoiling quark
777with energy $q$$q$ is measured in the CMS of $\tilde{\mu}$, which
778coincides with the lab frame in the present version of the model because no
779cluster motion is considered.  At this point one should recall that a colored
780residual quasmon, $CRQ$, with mass $M_{N-1}$ remains after the radiation of
781$k$$CRQ$ is finally fused with the recoil quark $q$ to form the residual
782quasmon $RQ$.  The minimum mass of $RQ$ should be greater than $M_{\min}$,
783which is determined by the minimum mass of a hadron (or Chipolino
784double-hadron as defined in Section \ref{annil}) with the same quark content.
785
786All quark-antiquark pairs with the same flavor should be canceled in the
787minimum mass calculations.  This imposes a restriction, which in the
788center-of-mass system of $\mu_{c}$, can be written as
789\begin{equation}
7902q\cdot (E-p\cdot \cos \theta_{qCQ})+M_{N-1}^{2}>M_{\min }^{2},
791\label{min_mass}
792\end{equation}
793where $E$ is the energy and $p$ is the momentum of the colored residual
794quasmon with mass $M_{N-1}$ in the CMS of $\mu _{c}$.  The restriction for
795$\cos\theta_{qCQ}$ then becomes
796\begin{equation}
797\cos \theta _{qCQ}<\frac{2qE-M_{\min }^{2}+M_{N-1}^{2}}{2qp},
798\label{cost_restriction}
799\end{equation}
800which implies
801\begin{equation}
802q>\frac{M_{N-1}^{2}-M_{\min }^{2}}{2\cdot (E+p)}\label{resid_rest}
803\end{equation}
804
805A second restriction comes from the nuclear Coulomb barrier for charged
806particles.  The Coulomb barrier can be calculated in the simple form:
807\begin{equation}
808E_{CB}=\frac{Z_{F}\cdot
809Z_{R}}{A_{F}^{\frac{1}{3}}+A_{R}^{\frac{1}{3}}}\ (\rm{MeV}),
810\label{CoulBar}
811\end{equation}
812where $Z_F$ and $A_F$ are the charge and atomic weight of the fragment, and
813$Z_R$ and $A_R$ are the charge and atomic weight of the residual nucleus.
814The obvious restriction is
815\begin{equation}
816   q<k+\tilde{\mu}-\mu -E_{CB}\label{cb_rest}
817\end{equation}
818
819In addition to \ref{resid_rest} and \ref{cb_rest}, the quark
820exchange mechanism imposes restrictions which are calculated below.  The
821spectrum of recoiling quarks is similar to the $k^{\ast}$ spectrum in the
822quasmon (\ref{spectrum_1II}):
823\begin{equation}
824  \frac{dW}{q\ dq\ d\cos \theta }\propto 
825  \left(1-\frac{2q}{\tilde{\mu}}\right)^{n-3}, \label{spectrum_2II}
826\end{equation}
827where $n$ is the number of quark-partons in the nucleon cluster.  It is
828assumed that $n = 3 A_C$, where $A_C$ is the atomic weight of the parent
829cluster.  The tunneling of quarks from one nucleon to another provides a
830common phase space for all quark-partons in the cluster.
831
832An additional equation follows from the mass shell condition for the
833outgoing fragment,
834\begin{equation}
835\mu ^{2}=\tilde{\mu}^{2}+2\tilde{\mu}\cdot k-2\tilde{\mu}\cdot q-2k\cdot
836q\cdot (1-\cos \theta _{kq}),  \label{hadronII}
837\end{equation}
838where $\theta _{kq}$ is the angle between quark-parton momenta in the lab
839frame.  From this equation $q$ can be calculated as
840\begin{equation}
841q=\frac{\tilde{\mu}\cdot (k-\Delta )}{\tilde{\mu}+k\cdot 
842(1-\cos \mathit{\theta }_{\mathit{kq}})}\label{q-cos}
843\end{equation}
844where $\Delta $ is the covariant binding energy of the cluster
845$\Delta =\frac{\mu ^{2}-\tilde{\mu}^{2}}{2\tilde{\mu}}$.
846The quark exchange probability integral can be then written in the form:
847\begin{eqnarray}
848&&P(k,\tilde{\mu},\mu )=  \nonumber \\
849&&\int \delta \left[ \mu ^{2}-\tilde{\mu}^{2}-2\tilde{\mu}\cdot k+2\tilde{\mu
850}\cdot q+2k\cdot {q}\cdot (1-\cos \theta _{kq})\right]   \nonumber \\
851&&\ \ \ \ \ \ \ \ \times \ \left( 1-\frac{2{q}}{\tilde{\mu}}\right) ^{n-3}{q}
852d{q\cdot }d\cos \theta _{kq}.
853\end{eqnarray}
854Using the $\delta$-function to perform the integration over $q$ one obtains
855\begin{eqnarray}
856P(k,\tilde{\mu},\mu ) &=&\int \left( 1-\frac{2(k-\Delta )}{\tilde{\mu}
857+k(1-\cos \theta _{\mathit{kq}})}\right) ^{n-3}  \nonumber \\
858&&\times \ \frac{\tilde{\mu}(k-\Delta )}{2[\tilde{\mu}+k(1-\cos \mathit{
859\theta }_{\mathit{kq}})]^{2}}d\mathit{\cos \theta }_{\mathit{kq}}
860\end{eqnarray}
861or
862\begin{eqnarray}
863P(k,\tilde{\mu},\mu ) &=&\int \left( 1-\frac{2(k-\Delta )}{\tilde{\mu}
864+k(1-\cos \theta _{\mathit{kq}})}\right) ^{n-3}  \nonumber \\
865&&\times \ \left( \frac{\tilde{\mu}(k-\Delta )}{\tilde{\mu}+k(1-\cos 
866\mathit{\theta }_{\mathit{kq}})}\right) ^{2}  \nonumber \\
867&&\times \ d \left( \frac{\tilde{\mu}+k(1-\cos 
868\mathit{\theta }_{\mathit{kq}})}{\tilde{\mu}(k-\Delta )}\right).
869\end{eqnarray}
870The result of the integration is
871\begin{eqnarray}
872&&P(k,\tilde{\mu},\mu )=\frac{\tilde{\mu}}{4k(n-2)}  \nonumber \\
873&&\times \ \left[ \left( 1-\frac{2(k-\Delta )}{\tilde{\mu}+2k}\right)
874_{\rm{high}}^{n-2}-\left( 1-\frac{2(k-\Delta )}{\tilde{\mu}}\right)
875_{\rm{low}}^{n-2}%
876\right] .  \label{QUEX_Int}
877\end{eqnarray}
878For randomization it is convenient to make $z$ a random parameter
879\begin{equation}
880z=1-\frac{2(k-\Delta )}{\tilde{\mu}+k(1-\cos 
881\theta_{\mathit{kq}})}=1-\frac{2{q}}{\tilde{\mu}}\label{z(q)}
882\end{equation}
883From (\ref{QUEX_Int}) one can find the high and the low limits of the
884randomization. The first limit is for $k$: $k>\Delta$. It is
885similar to the restriction for quasmon fragmentation in vacuum:
886$k^{\ast}>\frac{\mu^{2}}{2M}$. The second limit is
887$k=\frac{\mu^{2}}{2\tilde{\mu}}$, when the low limit of randomization
888becomes equal to zero. If $k<\frac{\mu^{2}}{2\tilde{\mu}}$, then
889$-1<\cos\theta_{kq}<1$\ and
890$z_{\rm{low}}=1-\frac{2(k-\Delta)}{\tilde{\mu}}$. If
891$k>\frac{\mu^{2}}{2\tilde{\mu}}$, then the range of $\cos\theta
892_{kq}$\ is $-1<\cos\theta_{kq}<\frac{\mu^{2}}{k\tilde{\mu}}-1$\ and
893$z_{\rm{low}}=0$.  This value of $z_{\rm{low}}$\ should be corrected
894using the Coulomb barrier restriction (\ref{cb_rest}), and the value of
895$z_{\rm{high}}$ should be corrected using the minimum residual quasmon
896restriction (\ref{resid_rest}). In the case of a quasmon with momentum much
897less than $k$ it is possible to impose tighter restrictions than
898(\ref{resid_rest}) because the direction of motion of the CRQ is
899opposite to $k$. So
900$\cos\theta_{qCQ}=-\cos\mathit{\theta}_{\mathit{kq}}$, and from
901(\ref{q-cos}) one can find that
902\begin{equation}
903\cos \theta_{qCQ} =1-\frac{\tilde{\mu}\cdot (k-\Delta -q)}{k\cdot q}.
904\label{cos_q}
905\end{equation}
906So in this case the equation (\ref{resid_rest})\ can be replaced by
907the more stringent one:
908\begin{equation}
909q>\frac{M_{N-1}^{2}-M_{\min }^{2}+2\frac{p\cdot 
910\tilde{\mu}}{k}(k-\Delta )}{2\cdot (E+p+\frac{p\cdot \tilde{\mu}}{k})}.
911\end{equation}
912
913The integrated kinematical quark exchange probability (in the range
914from $z_{\rm{low}}$ to $z_{\rm{high}}$) is
915\begin{equation}
916\frac{\tilde{\mu}}{4k(n-2)}\cdot z^{n-2}\label{z_probabII}
917\end{equation}
918and the total kinematic probability of hadronization of the quark-parton
919with energy $k$ into a nuclear fragment with mass\ $\mu $ is
920\begin{equation}
921\frac{\tilde{\mu}}{4k(n-2)}\cdot 
922\left( z_{\rm{high}}^{n-2}-z_{\rm{low}}^{n-2}\right).
923\label{tot_kin_probabII}
924\end{equation}
925This can be compared with the vacuum probability of the quark fusion mechanism
926from Section \ref{annil}:
927\begin{equation}
928\frac{M-2k}{4k(N-3)}z_{\max }^{N-3}.
929\end{equation}
930The similarity is very important, as the absolute probabilities
931define the competition between vacuum and nuclear channels.
932
933Equations (\ref{z_probabII})\ and (\ref{tot_kin_probabII})\ can be used for
934randomization of $z$:
935\begin{equation}
936z=z_{\rm{low}}+\sqrt[n-2]{R}\cdot (z_{\rm{high}}-z_{\rm{low}}),
937 \label{z_randomII}
938\end{equation}
939where $R$\ is a random number, uniformly distributed in the interval (0,1).
940
941Eq. (\ref{tot_kin_probabII})\ can be used to control the competition
942between different nuclear fragments and hadrons in the hadronization
943process, but in contrast to the case of ``in vacuum'' hadronization
944it is not enough to take into account only the quark combinatorics of the
945quasmon and the outgoing hadron. In the case of hadronization in nuclear
946matter, different parent bound clusters should be taken into account as well.
947For example, tritium can be radiated as a result of quark exchange with a
948bound tritium cluster or as a result of quark exchange with a bound $^3$He
949cluster.
950
951To calculate the yield of fragments it is necessary to calculate the
952probability to find a cluster with certain proton and neutron content
953in a nucleus. One could consider any particular probability as an
954independent parameter, but in such a case the process of tuning the model
955would be difficult. We proposed the following scenario of
956clusterization. A gas of quasi-free nucleons is close to the phase
957transition to a liquid bound by strong quark exchange forces. Precursors of
958the liquid phase are nuclear clusters, which may
959be considered as ``drops'' of the liquid phase within the nucleus. Any
960cluster can meet another nucleon and absorb it (making it bigger),
961or it can release one of the nucleons (making it smaller).  The
962first parameter $\varepsilon_{1}$\ is the percentage of quasi-free
963nucleons not involved in the clusterization process. The rest of the
964nucleons ($1-\varepsilon_{1}$) clusterize.
965We assume that since on the periphery of the nucleus the density
966is lower, one can consider only dibaryon clusters, and neglect
967triple-baryon clusters.  Still we denote the number of nucleons
968clusterized in dibaryons on the periphery by the parameter
969$\varepsilon_{2}$.  In the dense part of the nucleus, strong quark
970exchange forces make clusters out of quasi-free nucleons with high
971probability.  To characterize the distribution of clusters the
972clusterization probability parameter $\omega$ was used.
973
974If the number of nucleons involved in clusterization is
975$a=(1-\varepsilon_{1}-\varepsilon _{2})\cdot A$, then the probability
976to find a cluster consisting of $\nu$\ nucleons is defined by the
977distribution
978\begin{equation}
979P_{\nu }\propto C_{\nu }^{a}\cdot \omega ^{\nu -1},
980\end{equation}
981where $C_{\nu }^{a}$ is the corresponding binomial coefficient.
982The coefficient of proportionality can be found from the equation
983\begin{equation}
984a=b\cdot \sum\limits_{\nu =1}^{a}\nu \cdot C_{\nu }^{a}\cdot \omega ^{\nu
985-1}=b\cdot a\cdot (1+\omega )^{a-1}.
986\end{equation}
987Thus, the number of clusters consisting of $\nu$\ nucleons is
988\begin{equation}
989P_{\nu }=\frac{C_{\nu }^{a}\cdot \omega ^{\nu -1}}{(1+\omega )^{a-1}}.
990\end{equation}
991For clusters with an even number of nucleons we used only isotopically
992symmetric configurations ($\nu=2n$, $n$\ protons and $n$\ neutrons) and
993for odd clusters ($\nu =2n+1$) we used only two configurations: $n$\
994neutrons with $n+1$\ protons and $n+1$\ neutrons with $n$\ protons. This
995restriction, which we call ``isotopic focusing'', can be considered an
996empirical rule of the CHIPS model which helps to describe data. It is
997applied in the case of nuclear
998clusterization (isotopically symmetric clusters) and in the case of
999hadronization in nuclear matter.  In the hadronization process the
1000quasmon is shifted from the isotopic symmetric state (e.g., by capturing
1001a negative pion) and transfers excess charge to the outgoing nuclear
1002cluster. This tendency is symmetric with respect to the quasmon and
1003the parent cluster.
1004
1005The temperature parameter used to calculate the number of
1006quark-partons in a quasmon (see equation~\ref{temperatureII}) was chosen
1007to be $T=180$ MeV, which is the same as in Section \ref{annil}.
1008
1009CHIPS is mostly a model of fragmentation, conserving energy, momentum, and
1010charge. But to compare it with experimental data one needs to model also the
1011first interaction of the projectile with the
1012nucleus.  For proton-antiproton annihilation this was easy, as we
1013assumed that in the interaction at rest, a proton and antiproton always
1014create a quasmon. In the case of pion capture the pion can be captured by
1015different clusters. We assumed that the probability of capture is
1016proportional to the number of nucleons in a cluster.  After the
1017capture the quasmon is formed, and the CHIPS generator produces
1018fragments consecutively and recursively, choosing at each step the
1019quark-parton four-momentum $k$, the type of parent and outgoing fragment,
1020and the four-momentum of the exchange quark-parton $q$, to produce
1021a final state hadron and the new quasmon with less energy.
1022
1023In the CHIPS model we consider this process as a chaotic process
1024with large number of degrees of freedom and do not take into account
1025any final state interactions of outgoing hadrons. Nevertheless, when
1026the excitation energy dissipates, and in some step the quasmon mass
1027drops below the mass shell, the quark-parton mechanism of hadronization
1028fails. To model the event exclusively, it becomes necessary to
1029continue fragmentation at the hadron level. Such a fragmentation process
1030is known as nuclear evaporation. It is modeled using the
1031non-relativistic phase space approach.  In the non-relativistic case the
1032phase space of nucleons can be integrated as well as in the
1033ultra-relativistic case of quark-partons.
1034
1035The general formula for the non-relativistic phase space can be found starting
1036with the phase space for two particles $\tilde{\Phi}_{2}$. It is
1037proportional to the center-of-mass momentum:
1038\begin{equation}
1039\tilde{\Phi}_2(W_2) \propto \sqrt{W_2}\label{F2}
1040\end{equation}
1041where $W_2$\ is a total kinetic energy of the two non-relativistic
1042particles.  If the phase space integral is known for $n-1$\ hadrons
1043then it is possible to calculate the phase space integral for $n$\
1044hadrons:
1045\begin{eqnarray}
1046\tilde{\Phi}_{n}(W_n) &=&\int \tilde{\Phi}_{n-1}(W_{n-1}) \cdot
1047\delta (W_{n}-W_{n-1}-E_{\rm{kin}}\nonumber \\
1048&&\times \sqrt{E_{\rm{kin}}}dE_{\rm{kin}} dW_{n-1}\label{Fn} 
1049\end{eqnarray}
1050Using (\ref{F2})\ and (\ref{Fn})\ one can find that
1051\begin{equation}
1052\tilde{\Phi}_{n}(W_n)\propto W_{n}^{\frac{3}{2}n-\frac{5}{2}}
1053\end{equation}
1054and the spectrum of hadrons, defined by the phase space of residual
1055$n-1$ nucleons, can be written as
1056\begin{equation}
1057\frac{dN}{\sqrt{E_{\rm{kin}}}dE_{\rm{kin}}} \propto 
1058\left(1-\frac{E_{\rm{kin}}}{W_{n}}\right)^{\frac{3}{2}n-4}.
1059\label{evap_spectr}
1060\end{equation}
1061This spectrum can be randomized. The only problem is from which level one
1062should measure the thermal kinetic energy when most nucleons in nuclei
1063are filling nuclear levels with zero temperature. To model the evaporation
1064process we used this unknown level as a parameter $U$\ of the evaporation
1065process. Comparison with experimental data gives $U=1.7$ MeV. Thus, the
1066total kinetic energy of $A$\ nucleons is
1067\begin{equation}
1068W_{A}=U\cdot A+E_{\rm{ex}},
1069\end{equation}
1070where $E_{\rm{ex}}$ is the excitation energy of the nucleus.
1071
1072To\  be\  radiated,\ \  the nucleon\ \  should\ \  overcome\ \  the threshold
1073\begin{equation}
1074U_{\rm{thresh}}=U+U_{\rm{bind}}+E_{CB},
1075\end{equation}
1076where $U_{\rm{bind}}$\ is the separation energy of the nucleon, and
1077$E_{CB}$\ is the Coulomb barrier energy which is non-zero only for
1078positive particles and can be calculated using formula
1079(\ref{CoulBar}).
1080
1081From several experimental investigations of nuclear pion capture at
1082rest, four published results have been selected here, which
1083constitute, in our opinion, a representative data set covering a wide
1084range of target nuclei, types of produced hadrons and nuclear
1085fragments, and their energy range. In the first publication
1086\cite{MIPHI}\ the spectra of charged fragments (protons, deuterons,
1087tritons, $^{3}$He, $^{4}$He) in pion capture were measured on
108817 nuclei within one experimental setup. To verify the spectra we
1089compared them for a carbon target with detailed measurements of the
1090spectra of charged fragments given in Ref.~\cite{Mechtersheimer}. In
1091addition, we took $^{6}$Li spectra for a carbon
1092target from the same paper.
1093
1094The neutron spectra were added from Ref.~\cite{Cernigoi} and
1095Ref.~\cite{Madey}. We present data and Monte Carlo distributions as
1096the invariant phase space function
1097$f=\frac{d\sigma}{pdE}$\ depending on the variable
1098$k=\frac{p+E_{\rm{kin}}}{2}$\ as defined in equation~(\ref{k}).
1099
1100Spectra on $^{9}$Be, $^{12}$C, $^{28}$Si ($^{27}$Al for secondary
1101neutrons), $^{59}$Co ($^{64}$Cu for secondary neutrons), and
1102$^{181}$Ta\ are shown in Figs.~\ref{be0405}\ through~\ref{ta73108}.
1103The data are well-described, including the total energy spent in the
1104reaction to yield the particular type of fragments.
1105
1106The evaporation process for nucleons is also well-described.  It is
1107exponential in $k$, and looks especially impressive for Si/Al and
1108Co/Cu data, where the Coulomb barrier is low, and one can see proton
1109evaporation as a continuation of the evaporation spectra from
1110secondary neutrons. This way the exponential behavior of the
1111evaporation process can be followed over 3 orders of
1112magnitude. Clearly seen is\ the\ transition region at\ \ $k \approx
111390$\ MeV\ \ (kinetic energy $15-20$\ MeV)\ \ between the quark-level
1114hadronization process and the hadron-level evaporation process. For
1115light target nuclei the evaporation process becomes much less
1116prominent.
1117
1118The $^{6}$Li spectrum on a carbon target exhibits an interesting regularity
1119when plotted as a function of $k$: it practically coincides with the
1120spectrum of $^{4}$He fragments, and shows exponential behavior in a
1121wide range of $k$, corresponding to a few orders of magnitude in the
1122invariant cross section.  To keep the figure readable, the $^{6}$Li
1123spectrum generated by CHIPS was not plotted. It coincides with the
1124$^{4}$He spectrum at $k > 200$\ MeV, and under-estimates lithium
1125emission at lower energies, similarly to the $^{3}$He and tritium data.
1126
1127Between the region where hadron-level processes dominate and the
1128kinematic limit, all hadronic spectrum slopes become similar when plotted
1129as a function of $k$. In addition to this general behavior there is
1130the effect of strong proton-neutron splitting. For protons and neutrons
1131it reaches almost an order of magnitude. To model such splitting in
1132the CHIPS generator, the mechanism of ``isotopic focusing'' was used,
1133which locally transfers the negative charge from the pion to the first
1134radiated nuclear fragment.
1135
1136\begin{table}
1137\caption{Clusterization parameters}
1138\label{tab:1}
1139\begin{tabular}{llllll}
1140\hline\noalign{\smallskip}
1141& $^{9}$Be & $^{12}$C & $^{28}$Si & $^{59}$Co & $^{181}$Ta \\
1142\noalign{\smallskip}\hline\noalign{\smallskip}
1143$\varepsilon_{1}$ & 0.45 & 0.40 & 0.35 & 0.33 & 0.33 \\
1144$\varepsilon_{2}$ & 0.15 & 0.15 & 0.05 & 0.03 & 0.02 \\
1145$\omega $ & 5.00 & 5.00 & 5.00 & 5.00 & 5.00 \\
1146\noalign{\smallskip}\hline
1147\end{tabular}
1148\end{table}
1149
1150Thus, the model qualitatively describes all typical features of the
1151pion capture process. The question is what can be extracted from the
1152experimental data with this tool. The clusterization parameters are
1153listed in Table~\ref{tab:1}. No formal fitting procedure has been
1154performed. A balanced qualitative agreement with all data was used to
1155tune the parameters. The difference between the $\frac{\varepsilon
1156_{2}}{\varepsilon _{1}}$\ ratio and the parameter $\omega$\ (which is
1157the same for all nuclei) is an indication that there is a
1158phase transition between the gas phase and the liquid phase of the
1159nucleus. The large value of the parameter $\omega$, determining the
1160average size of a nuclear cluster, is critical in describing
1161the model spectra
1162at large $k$, where the fragment spectra approach the kinematic
1163limits.
1164
1165Using the same parameters of clusterization, the $\gamma$\ absorption
1166data \cite{Ryckbosch} on Al and Ca nuclei were compared in
1167Fig.~\ref{gam62}) to the CHIPS results. One can see that the
1168spectra of secondary protons and deuterons are qualitatively described
1169by the CHIPS model.
1170
1171\begin{figure}[tbp]
1172% \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/be0405k.eps, height=4.5in, width=4.5in}}
1173%\resizebox{1.00\textwidth}{!}
1174%{
1175\includegraphics[angle=0,scale=0.6]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/be0405k.eps}
1176%\includegraphics[angle=0,scale=0.6]{plots/be0405k.eps}
1177%}
1178\caption{\protect{Comparison of the CHIPS model results with
1179experimental data on proton, neutron, and nuclear fragment production
1180in the capture of negative pions on $^9$Be.
1181Proton~\cite{MIPHI} and neutron~\cite{Cernigoi}\ experimental spectra
1182are shown in the upper left panel by open circles and open squares,
1183respectively. The model calculations are shown by the two
1184corresponding solid lines. The same arrangement
1185is used to present $^{3}$He~\cite{MIPHI}
1186and tritium~\cite{MIPHI}
1187spectra in the lower left panel. Deuterium~\cite{MIPHI} 
1188and $^{4}$He~\cite{MIPHI} spectra are
1189shown in the right panels of the figure by open squares
1190and lines (CHIPS model). The average kinetic
1191energy carried away by each nuclear fragment is shown in the panels
1192by the two numbers: first is the average calculated using the
1193experimental data shown; second is the model result.}}
1194\label{be0405}
1195\end{figure}
1196
1197\begin{figure}[tbp]
1198% \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/c0606k.eps, height=4.5in, width=4.5in}}
1199%\resizebox{1.00\textwidth}{!}
1200%{
1201\includegraphics[angle=0,scale=0.6]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/c0606k.eps}
1202%\includegraphics[angle=0,scale=0.6]{plots/c0606k.eps}
1203%}
1204\caption{\protect{Same as in Figure~\ref{be0405}, for
1205pion capture on $^{12}$C. The experimental neutron spectrum
1206is taken from \cite{Madey}. In addition, the detailed data on
1207charged particle production, including the $^{6}$Li spectrum, taken from
1208Ref.~\cite{Mechtersheimer}, are superimposed on the plots as a series of
1209dots.}}
1210\label{c0606}
1211\end{figure}
1212
1213\begin{figure}[tbp]
1214% \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/si1414k.eps, height=4.5in, width=4.5in}}
1215%\resizebox{1.00\textwidth}{!}
1216%{
1217\includegraphics[angle=0,scale=0.6]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/si1414k.eps}
1218%\includegraphics[angle=0,scale=0.6]{plots/si1414k.eps}
1219%}
1220\caption{\protect{Same as in Figure~\ref{be0405}, for
1221pion capture on $^{28}$Si nucleus. The experimental neutron spectrum
1222is taken from~\cite{Madey}, for the reaction on $^{27}$Al.}}
1223\label{si1414}
1224\end{figure}
1225
1226\begin{figure}[tbp]
1227% \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/co2732k.eps, height=4.5in, width=4.5in}}
1228%\resizebox{1.00\textwidth}{!}
1229%{
1230\includegraphics[angle=0,scale=0.6]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/co2732k.eps}
1231%\includegraphics[angle=0,scale=0.6]{plots/co2732k.eps}
1232%}
1233\caption{\protect{Same as in Figure~\ref{be0405}, for
1234pion capture on $^{59}$Co. The experimental neutron spectrum
1235is taken from~\cite{Madey}, for the reaction on $^{64}$Cu.}}
1236\label{co2732}
1237\end{figure}
1238
1239\begin{figure}[tbp]
1240% \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/ta73108k.eps, height=4.5in, width=4.5in}}
1241%\resizebox{1.00\textwidth}{!}
1242%{
1243\includegraphics[angle=0,scale=0.6]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/ta73108k.eps}
1244%\includegraphics[angle=0,scale=0.6]{plots/ta73108k.eps}
1245%}
1246\caption{\protect{Same as in Figure~\ref{be0405}, for
1247pion capture on $^{181}$Ta. The experimental neutron
1248spectrum is taken from~\cite{Madey}.}}
1249\label{ta73108}
1250\end{figure}
1251
1252\begin{figure}[tbp]
1253% \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/gam62.eps, height=4.5in, width=4.5in}}
1254%\resizebox{0.70\textwidth}{!}
1255%{
1256\includegraphics[angle=0,scale=0.75]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/gam62.eps}
1257%\includegraphics[angle=0,scale=0.75]{plots/gam62.eps}
1258%}
1259\caption{\protect{Comparison of CHIPS model with
1260experimental data~\cite{Ryckbosch} on
1261proton and deuteron production at $90^{\circ}$ 
1262in photonuclear reactions on $^{27}$Al
1263and $^{40}$Ca at 59 -- 65 MeV. Open circles and solid squares represent the
1264experimental proton and deuteron spectra,
1265respectively. Solid
1266and dashed lines show the results of the corresponding CHIPS model
1267calculation. Statistical errors in the CHIPS results are not shown and
1268can be judged by the point-to-point variations in the lines. The
1269comparison is absolute, using the values of total
1270photonuclear cross section 3.6 mb for Al and 5.4 mb for Ca,
1271as given in Ref.~\cite{Ahrens}.
1272}}
1273\label{gam62}
1274\end{figure}
1275
1276The CHIPS model covers a wide spectrum of hadronic reactions with a
1277large number of degrees of freedom. In the case of nuclear reactions
1278the CHIPS generator helps to understand phenomena such as the
1279order-of-magnitude splitting of neutron and proton spectra, the high
1280yield of energetic nuclear fragments, and the emission of nucleons
1281which kinematically can be produced only if seven or more nucleons
1282are involved in the reaction.
1283
1284The CHIPS generator allows the extraction of collective parameters of
1285a nucleus such as clusterization. The qualitative conclusion based on
1286the fit to the experimental data is that most of the nucleons are
1287clusterized, at least in heavy nuclei.  The nuclear clusters can be
1288considered as drops of a liquid nuclear phase. The quark exchange
1289makes the phase space of quark-partons of each cluster common,
1290stretching the kinematic limits for particle production.
1291
1292The hypothetical quark exchange process is important not only for
1293nuclear clusterization, but also for the nuclear hadronization
1294process.  The quark exchange between the excited cluster (quasmon)
1295and a neighboring nuclear cluster, even at low excitation level,
1296operates with quark-partons at energies comparable with the nucleon
1297mass. As a result it easily reaches the kinematic limits of the
1298reaction, revealing the multi-nucleon nature of the process.
1299
1300Up to now the most under-developed part of the model has been the
1301initial interaction between projectile and target. That is why we
1302started with proton-antiproton annihilation and pion capture on
1303nuclei at rest, because the interaction cross section is not involved.
1304The further development of the model will require a better
1305understanding of the mechanism of the first interaction.  However,
1306we believe that even the basic model will be useful in the
1307understanding the nature of multi-hadron fragmentation.  Because
1308of the model's features, it is a suitable candidate for the hadron
1309production and hadron cascade parts of the newly developed event
1310generation and detector simulation Monte Carlo computer codes.
1311
1312\section{Modeling of real and virtual photon
1313  interactions with nuclei below pion production threshold.}
1314
1315In the example of
1316the photonuclear reaction discussed in the Appendix D, namely
1317the description of $90^{\circ}$ proton and deuteron spectra in
1318$A({\gamma},X)$ reactions at $E_{\gamma} = 59-65$ MeV, the assumption
1319on the initial Quasmon excitation mechanism was the same. The
1320description of the $90^{\circ}$ data was satisfactory, but the
1321generated data showed very little angular dependence, because the
1322velocity of the quasmons produced in the initial state was small,
1323and the fragmentation process was almost isotropic.  Experimentally,
1324the angular dependence of secondary protons in photo-nuclear reactions
1325is quite strong even at low energies (see, for example,
1326Ref.~\cite{Ryckebusch}). This is a challenging experimental fact which
1327is difficult to explain in any model. It's enough to say that if the
1328angular dependence of secondary protons in the $\gamma ^{40}$Ca
1329interaction at 60 MeV is analyzed in terms of relativistic boost, then
1330the velocity of the source should reach $0.33 c$; hence the mass
1331of the source should be less than pion mass. The main point of this
1332discussion is to show that the quark-exchange mechanism used in the
1333CHIPS model can not only model the clusterization of nucleons in nuclei
1334and hadronization of intranuclear excitations into nuclear fragments,
1335but it can also model complicated mechanisms of the interaction of
1336photons and hadrons in nuclear matter.
1337
1338In Ref. Appendix D a quark-exchange diagram was defined which
1339helps to keep track of the kinematics of the quark-exchange process
1340(see Fig.~1 in Apendix D). To apply the same diagram to
1341the first interaction of a photon with a nucleus, it is necessary to
1342assume that the quark-exchange process takes place in nuclei
1343continuously, even
1344without any external interaction. Nucleons with high momenta do not
1345leave the nucleus because of the lack of excess energy. The
1346hypothesis of the CHIPS model is that the quark-exchange forces
1347between nucleons \cite{NN QEX}\ continuously create clusters in normal
1348nuclei. Since a low-energy photon (below the pion production threshold)
1349cannot be absorbed by a free nucleon, other absorption mechanisms
1350involving more than one nucleon have to be used.
1351
1352The simplest scenario is photon absorption by a quark-parton in
1353the nucleon. At low energies and in vacuum this does not work because
1354there is no corresponding excited baryonic state. But in nuclear matter
1355it is possible to exchange this quark with a neighboring nucleon
1356or a nuclear cluster. The diagram for the process is shown in
1357Fig.~\ref{diagram1}. In this case the photon is absorbed by a
1358quark-parton from the parent cluster $\rm{PC}_1$, and then
1359the secondary nucleon or cluster $\rm{PC}_2$
1360absorbs the entire momentum of the quark and photon. The exchange
1361quark-parton $q$ restores the balance of color, producing the
1362final-state hadron F and the residual Quasmon RQ. The process looks like a
1363knockout of a quasi-free nucleon or cluster out of the nucleus. It should be
1364emphasized that in this scenario the CHIPS event generator
1365produces not only ``quasi-free'' nucleons but ``quasi-free'' fragments
1366as well. The yield of these quasi-free nucleons or fragments is
1367concentrated in the forward direction.
1368
1369The second scenario which provides for an angular dependence is the absorption
1370of the photon by a colored fragment ($\rm{CF}_2$ 
1371in Fig.~\ref{diagram2}). In this
1372scenario, both the primary quark-parton with momentum $k$ and the photon
1373with momentum $q_{\gamma}$ are absorbed by a parent cluster ($\rm{PC}_2$ in
1374Fig.~\ref{diagram2}), and the recoil quark-parton with momentum $q$
1375cannot fully compensate the momentum $k+q_{\gamma}$.
1376As a result the radiation of the
1377secondary fragment in the forward direction becomes more probable.
1378
1379In both cases the angular dependence is defined by the first act of
1380hadronization. Further fragmentation of the residual quasmon is
1381almost isotropic.
1382
1383\begin{figure}[tbp]
1384% \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/diagram1.eps, height=2.5in, width=2.5in}}
1385%\resizebox{0.70\textwidth}{!}
1386%{
1387\includegraphics[angle=0,scale=0.6]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/diagram1.eps}
1388%\includegraphics[angle=0,scale=0.6]{plots/diagram1.eps}
1389%}
1390\caption{\protect{Diagram of photon absorption in the quark
1391exchange mechanism. $\rm{PC}_{1,2}$ stand for parent clusters
1392with bound masses
1393$\tilde{\mu}_{1,2}$, participating in the quark-exchange. $\rm{CF}_{1,2}$
1394stand for the colored nuclear fragments in the process of quark
1395exchange. F($\mu$) denotes the outgoing hadron with mass $\mu$ in the
1396final state. RQ is the residual Quasmon which carries the rest of the
1397excitation energy and momentum. $M_{\min}$ characterizes
1398its minimum mass defined by its quark content. Dashed lines indicate
1399colored objects. The photon is absorbed by a
1400quark-parton $k$ from the parent cluster $\rm{PC}_1$.
1401}}
1402\label{diagram1}
1403\end{figure}
1404
1405\begin{figure}[tbp]
1406%  \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/diagram2.eps, height=2.5in, width=2.5in}}
1407%\resizebox{0.70\textwidth}{!}
1408%{
1409\includegraphics[angle=0,scale=0.6]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/diagram2.eps}
1410%\includegraphics[angle=0,scale=0.6]{plots/diagram2.eps}
1411%}
1412\caption{\protect{Diagram of photon absorption in the
1413quark-exchange mechanism. The notation is the same as in
1414Fig.~\ref{diagram1}. The photon is absorbed by the colored fragment
1415$\rm{CF}_2$.
1416}}
1417\label{diagram2}
1418\end{figure}
1419
1420It was shown in Section \ref{annil} that the energy spectrum of quark
1421partons in a quasmon can be calculated as
1422\begin{equation}
1423\frac{dW}{k^{\ast }dk^{\ast }}\propto 
1424\left(1-\frac{2k^{\ast }}{M} \right)^{N-3}\label{spectrum_1III}
1425\end{equation}
1426where $k^{\ast }$ is the energy of the primary quark-parton in the
1427center-of-mass system of the quasmon, $M$\ is the mass of the quasmon.
1428The number $N$ of quark-partons in the quasmon can be calculated
1429from the equation
1430\begin{equation}
1431<M^{2}>=4\cdot N\cdot (N-1)\cdot T^{2}\label{temperatureIII}
1432\end{equation}
1433Here $T$ is the temperature of the system.
1434
1435In the first scenario of the $\gamma A$ interaction
1436(Fig.~\ref{diagram1}), because both interacting particles are massless,
1437we assumed that the cross section for the interaction of a photon with
1438a particular quark-parton is proportional to the charge of the
1439quark-parton squared, and inversely proportional to the mass of the
1440photon-parton system $s$, which can be calculated as
1441\begin{equation}
1442s=2\omega k(1-\cos (\theta _{k})).  \label{s}
1443\end{equation}
1444Here $\omega $\ is the energy of the photon, and $k$ is the energy of
1445the quark-parton in the laboratory system (LS):
1446\begin{equation}
1447k=k^{\ast }\cdot \frac{E_{N}+p_{N}\cdot \cos (\theta _{k})}{M_{N}}.
1448\end{equation}
1449For a virtual photon, equation~(\ref{s}) can be written as
1450\begin{equation}
1451s=2k(\omega -q_{\gamma}\cdot \cos (\theta _{k})),
1452\end{equation}
1453where $q_{\gamma}$ is the momentum of the virtual photon. In both cases
1454equation~(\ref{spectrum_1III}) transforms into
1455\begin{equation}
1456\frac{dW}{dk^{\ast }}\propto \left(1-\frac{2k^{\ast }}{M} \right)^{N-3},
1457\end{equation}
1458and the angular distribution in $\cos (\theta _{k})$\ converges to a
1459$\delta $-function. In the case of a real photon
1460$\cos (\theta _{k})=1$, and in the case of a virtual photon
1461$\cos (\theta _{k})=\frac{\omega }{q_{\gamma}}$.
1462
1463In the second scenario for the photon interaction
1464(Fig.~\ref{diagram2}) we assumed that both the photon and the primary
1465quark-parton, randomized according to
1466Eq.~(\ref{spectrum_1III}), enter the parent cluster $\rm{PC}_2$,
1467and after that the normal procedure of quark exchange
1468continues, in which the recoiling quark-parton $q$ returns
1469to the first cluster.
1470
1471An additional parameter in the model is the relative contribution of
1472both mechanisms. As a first approximation we assumed equal
1473probability, but in the future, when more detailed data are obtained,
1474this parameter can be adjusted.
1475
1476\begin{figure}[tbp]
1477% \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/gam62.eps, height=4.5in, width=4.5in}}
1478%\resizebox{0.80\textwidth}{!}
1479%{
1480\includegraphics[angle=0,scale=0.75]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/gam62.eps}
1481%\includegraphics[angle=0,scale=0.75]{plots/gam62.eps}
1482%}
1483\caption{\protect{Comparison of the CHIPS model results (lines) with the
1484experimental data~\cite{Ryckbosch} on proton spectra at $90^{\circ}$ 
1485in the photonuclear reactions on $^{40}$Ca at 59--65 MeV (open
1486circles),
1487and proton spectra at $60^{\circ}$ (triangles) and $150^{\circ}$ 
1488(diamonds).
1489Statistical errors in the CHIPS results are not shown but
1490can be judged by the point-to-point variations in the lines. The
1491comparison is absolute, using the value of the total
1492photonuclear cross section of 5.4 mb for Ca, as given in Ref.~\cite{Ahrens}.
1493} }
1494\label{gam62III}
1495\end{figure}
1496
1497\begin{figure}[tbp]
1498% \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/gamm_c0606_e123.eps, height=4.5in, width=4.5in}}
1499%\resizebox{0.80\textwidth}{!}
1500%{
1501\includegraphics[angle=0,scale=0.75]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/gamm_c0606_e123.eps}
1502%\includegraphics[angle=0,scale=0.75]{plots/gamm_c0606_e123.eps}
1503%}
1504\caption{\protect{Comparison of the CHIPS model results (lines) with the
1505experimental data~\cite{Harty} on
1506proton spectra at $57^{\circ}$, $77^{\circ}$, $97^{\circ}$,
1507$117^{\circ}$, and $127^{\circ}$
1508in the photonuclear reactions on $^{12}$C at 123 MeV (open
1509circles).  The value of the total photonuclear cross section was set to 1.8 mb.
1510}  }
1511\label{gam_123}
1512\end{figure}
1513
1514\begin{figure}[tbp]
1515% \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/gamm_c0606_e151.eps, height=4.5in, width=4.5in}}
1516%\resizebox{0.80\textwidth}{!}
1517%{
1518\includegraphics[angle=0,scale=0.75]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/gamm_c0606_e151.eps}
1519%\includegraphics[angle=0,scale=0.75]{plots/gamm_c0606_e151.eps}
1520%}
1521\caption{\protect{Same as in Fig.~\ref{gam_123}, for the photon energy 151 MeV.}
1522}
1523\label{gam_151}
1524\end{figure}
1525
1526\begin{figure}[tbp]
1527% \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/vgam_c0606k.eps, height=4.5in, width=4.5in}}
1528%\resizebox{0.80\textwidth}{!}
1529%{
1530\includegraphics[angle=0,scale=0.75]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/vgam_c0606k.eps}
1531%\includegraphics[angle=0,scale=0.75]{plots/vgam_c0606k.eps}
1532%}
1533\caption{\protect{Comparison of the CHIPS model results (line) with
1534the experimental data~\cite{Bates} (open circles) on the
1535proton spectrum measured in parallel kinematics in the
1536$^{12}$C(e,e$^{\prime}$p)\ reaction at an energy transfer equal to 210
1537MeV and momentum transfer equal to 585 MeV/$c$.  Statistical errors in
1538the CHIPS result are not shown but can be judged by the point-to-point
1539variations in the line.  The relative normalization is arbitrary.
1540}  }
1541\label{vgam}
1542\end{figure}
1543
1544We begin the comparison with the data on proton production in the
1545$^{40}$Ca$(\gamma,X)$\ reaction at $90^{\circ}$\ and 59--65 MeV
1546\cite{Ryckbosch}, and at $60^{\circ}$\ and $150^{\circ}$\ and 60 MeV
1547\cite{Abeele}.  We analyzed these data together to compare the angular
1548dependence generated by CHIPS with experimental data. The data are
1549presented as a function of the invariant inclusive cross section
1550$f=\frac{d\sigma }{p_{p}dE_{p}}$\ depending on the variable
1551$k=\frac{T_{p}+p_{p}}{2}$,
1552where $T_{p}$\ and $p_{p}$\ are the kinetic energy and momentum of the
1553secondary proton. As one can see from Fig.~\ref{gam62III}, the angular
1554dependence of the proton yield in photoproduction on $^{40}$Ca at
1555$60$ MeV is reproduced quite well by the CHIPS event generator.
1556
1557The second set of measurements that we use for the benchmark
1558comparison deals with the secondary proton yields in
1559$^{12}$C$(\gamma,X)$ reactions at 123 and 151 MeV \cite{Harty},
1560which is still below the pion production threshold on
1561a free nucleon. Inclusive spectra of protons have been measured in
1562$\gamma ^{12}$C reactions at $57^{\circ}$, $77^{\circ}$, $97^{\circ}$,
1563$117^{\circ}$, and $127^{\circ}$.
1564Originally, these data were presented as a function of
1565the missing energy. We present the data in Figs.~\ref{gam_123} 
1566and \ref{gam_151} together with CHIPS calculations in
1567the form of the invariant inclusive cross section dependent on $k$.
1568All parameters of the model such as temperature $T$ and parameters
1569of clusterization for the particular nucleus were the same as in
1570Appendix D, where pion capture spectra were fitted.
1571The agreement between the experimental data and the CHIPS model results
1572is quite remarkable. Both data and calculations show significant strength
1573in the proton yield cross section up to the kinematic limits of the
1574reaction. The angular distribution in the model is not as prominent as
1575in the experimental data, but agrees well qualitatively.
1576
1577Using the same parameters, we applied the CHIPS event generator to the
1578$^{12}$C(e,e$^{\prime }$p) reaction measured in Ref.\cite{Bates}. The
1579proton spectra were measured in parallel kinematics in the interaction
1580of virtual photons with energy $\omega = 210$ MeV and momentum
1581$q_{\gamma} = 585$ MeV/$c$. To account for the experimental conditions
1582in the CHIPS event generator, we have selected protons generated in
1583the forward direction with respect to the direction of the virtual
1584photon, with the relative angle $\Theta_{qp} < 6^{\circ}$.  The CHIPS
1585generated distribution and the experimental data are shown in
1586Fig.~\ref{vgam} in the form of the invariant inclusive cross section as a
1587function of $k$.  The CHIPS event generator works only with ground
1588states of nuclei so we did not expect any narrow peaks for
1589$^{1}p_{3/2}$-shell knockout or for other shells. Nevertheless we
1590found that the CHIPS event generator fills in the so-called
1591``$^{1}s_{1/2}$-shell knockout'' region, which is usually artificially
1592smeared by a Lorentzian~\cite{Lorentzian}.  In the regular
1593fragmentation scenario the spectrum of protons below $k = 300$ MeV is
1594normal; it falls down to the kinematic limit. The additional yield at
1595$k > 300$ MeV is a reflection of the specific first act of
1596hadronization with the quark exchange kinematics. The slope increase
1597with momentum is approximated well by the model, but it is obvious
1598that the yield close to the kinematic limit of the $2 \rightarrow 2$
1599reaction can only be described in detail if the excited states of the
1600residual nucleus are taken into account.
1601
1602The angular dependence of the proton yield in low-energy photo-nuclear
1603reactions is described in the CHIPS model and event generator. The
1604most important assumption in the description is the hypothesis of a
1605direct interaction of the photon with an asymptotically free quark in
1606the nucleus, even at low energies. This means that asymptotic freedom of
1607QCD and dispersion sum rules~\cite{sum_rules} can in some way be
1608generalized for low energies.  The knockout of a proton from a nuclear
1609shell or the homogeneous distributions of nuclear evaporation cannot
1610explain significant angular dependences at low energies.
1611
1612The same mechanism appears to be capable of modeling proton yields in
1613such reactions as the $^{16}$C(e,e$^{\prime }$p) reaction measured at MIT
1614Bates \cite{Bates}, where it was shown that the region of missing
1615energy above 50 MeV reflects ``two-or-more-particle knockout'' (or the
1616``continuum'' in terms of the shell model). The CHIPS model may help
1617to understand and model such phenomena.
1618
1619\section{Chiral invariant phase-space decay in high energy hadron nuclear
1620reactions}
1621
1622\noindent \qquad Chiral invariant phase-space decay can be used to
1623de-excite an excited hadronic system. This possibility can be exploited
1624to replace the intra-nuclear cascading after a high energy primary
1625interaction takes place. The basic assumption in this is that the energy
1626loss of the high energy hadron in nuclear matter is approximately
1627constant per unit path length (about 1 GeV/fm). This energy is extracted
1628from the soft part of the particle spectrum of the primary interaction,
1629and from particles with formation times that place them within the
1630nuclear boundaries.
1631
1632Several approaches of transfering this energy into quasmons were studied,
1633and comparisons with energy spectra of particles emitted in the backward
1634hemisphere were made for a range of materials. Best results were achieved
1635with a model that creates one quasmon per particle absorbed in the nucleus.
1636
1637
1638\section{Neutrino-nuclear interactions}
1639\label{numunuc}
1640
1641The simulation of DIS reactions includes reactions with high $Q^2$. The
1642first approximation of the $Q^2$-dependent photonuclear cross-sections
1643at high $Q^2$ was made in \cite{photNuc}, where the modified photonuclear
1644cross sections of virtual photons \cite{Electronuc} were used.  The
1645structure functions of protons and deuterons have been approximated in
1646CHIPS by the sum of
1647non-perturbative multiperipheral and non-perturbative direct
1648interactions of virtual photons with hadronic partons:
1649\begin{figure}[tbp]
1650% \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/vgam_c0606k.eps, height=4.5in, width=4.5in}}
1651%\resizebox{0.80\textwidth}{!}
1652%{
1653\includegraphics[angle=0,scale=0.60]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/gabsa.eps}
1654%\includegraphics[angle=0,scale=0.60]{plots/gabsa.eps}
1655%}
1656\caption{
1657Fit of $\gamma A$ cross sections with different $H$ values. Data are
1658from \cite{photNuc}.
1659}
1660\label{gamC}
1661\end{figure}
1662\begin{equation}
1663F_2(x,Q^2)=[A(Q^2)\cdot x^{-\Delta(Q^2)}+B(Q^2)\cdot
1664x]\cdot(1-x)^{N(Q^2)-2},
1665\label{DIS}
1666\end{equation}
1667where $A(Q^2)=\bar{e^2_S}\cdot D\cdot U$, $B(Q^2)=\bar{e^2_V}\cdot(1-D)\cdot V$,
1668$\bar{e^2}_{V(p)}=\frac{1}{3}$, $\bar{e^2}_{V(d)}=\frac{5}{18}$,
1669$\bar{e^2_S}=\frac{1}{3}-\frac{\frac{1}{3}-\frac{5}{18}}{1+m^2_\phi/Q^2}
1670+\frac{\frac{1}{3}-\frac{5}{18}}{1+m^2_{J/\psi}/Q^2}-
1671\frac{\frac{1}{3}-\frac{19}{63}}{1+m^2_{\Upsilon}/Q^2}$,
1672$N=3+\frac{0.5}{\alpha_s(Q^2)}$,
1673$\alpha_s(Q^2)=\frac{4\pi}{\beta_0 ln(1+\frac{Q^2}{\Lambda^2})}$,
1674$\beta_0^{(n_f=3)}=9$, $\Lambda=200~MeV$,
1675$U=\frac{(3~C(Q^2)+N-3)\cdot\Gamma(N-\Delta)}
1676{N\cdot\Gamma(N-1)\cdot\Gamma(1-\Delta)}$, $V=3(N-1)$,
1677$D(Q^2)=H\cdot  S(Q^2)\left(1-\frac{1}{2}S(Q^2)\frac{\bar{e^2_V}}{\bar{e^2_S}}
1678\right)$,
1679$S={\left(1+\frac{m^2_\rho}{Q^2}\right)^{-\alpha_P(Q^2)}}$,
1680$\alpha_P=1+\Delta(Q^2)$, $\Delta=\frac{1+r}{12.5+2r}$,
1681$r=\left(\frac{Q^2}{1.66}\right)^{1/2}$, $C=\frac{1+f}{g\cdot (1+f/.24)}$,
1682$f=\left(\frac{Q^2}{0.08}\right)^2$, $g=1+\frac{Q^2}{21.6}$.
1683The parton distributions are normalized to the unit total momentum
1684fraction.
1685
1686\begin{figure}[tbp]
1687% \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/vgam_c0606k.eps, height=4.5in, width=4.5in}}
1688%\resizebox{0.80\textwidth}{!}
1689%{
1690\includegraphics[angle=0,scale=0.60]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/f23nud.eps}
1691%\includegraphics[angle=0,scale=0.60]{plots/f23nud.eps}
1692%}
1693\caption{
1694  Fit of $f_{2d}(x,Q^2)$ (filled circles, solid lines) and
1695  $f_{3d}(x,Q^2)$ (open circles, dashed lines) structure functions
1696  measured by the WA25 experiment \cite{WA25}.
1697}
1698\label{nuD}
1699\end{figure}
1700
1701The photonuclear cross sections are calculated by the eikonal formula:
1702\begin{equation}
1703\sigma_\gamma^{tot}=\left[\frac{4\pi\alpha}{Q^2}F_2\left(\frac{Q^2}
1704{2M\nu},Q^2\right)\right]^{\nu=E}_{Q^2=0},
1705\label{eikonal}
1706\end{equation}
1707An example of the approximation is shown in Fig.~\ref{gamC}. One can
1708see that the hadronic resonances are ``melted'' in nuclear matter and
1709the multi-peripheral part of the cross section (high energy) is
1710shadowed.
1711
1712The differential cross section of the $(\nu,\mu)$ reaction was
1713approximated as
1714\begin{equation}
1715\frac{yd^2\sigma^{\nu,\bar\nu}}{dydQ^2}=\frac{G^2_F\cdot        M^4_W}{4\pi\cdot
1716(Q^2+M^2_W)^2}\left[c_1(y)\cdot f_2(x,Q^2)\pm c_2(y)\cdot xf_3(x,Q^2)\right],
1717\label{difsec}
1718\end{equation}
1719where $c_1(y)=2-2y+\frac{y^2}{1+R}$, $R=\frac{\sigma_L}{\sigma_T}$,
1720$c_2(y)=y(2-y)$. As $\bar{e^2_V}=\bar{e^2_S}=1$ in
1721Eq.\ref{DIS}, hence $f_2(x,Q^2)=\left[D\cdot U\cdot
1722x^{-\Delta}+(1-D)\cdot V\cdot x\right]\cdot(1-x)^{N-2}$,
1723$xf_3(x,Q^2)=\left[ D\cdot U_{f3}\cdot x^{-\Delta}
1724+(1-D)\cdot V\cdot x\right]\cdot(1-x)^{N-2}$, with
1725$D=H\cdot S(Q^2)\cdot\left(1-\frac{1}{2}S(Q^2)\right)$ and
1726$U_{f3}=\frac{3\cdot    C(Q^2)\cdot\Gamma(N-\Delta)}
1727{N\cdot\Gamma(N-1)\Gamma(1-\Delta)}$. The approximation is compared
1728with data in Fig.\ref{nuD} for deuterium \cite{WA25} and in
1729Fig.\ref{nuFe} for iron \cite{CDHSW,CCFR}. It must be emphasized
1730that the CHIPS parton distributions are the same as for
1731electromagnetic reactions.
1732
1733\begin{figure}[tbp]
1734% \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/vgam_c0606k.eps, height=4.5in, width=4.5in}}
1735%\resizebox{0.80\textwidth}{!}
1736%{
1737\includegraphics[angle=0,scale=0.6]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/f23nufe.eps}
1738%\includegraphics[angle=0,scale=0.6]{plots/f23nufe.eps}
1739%}
1740\caption{
1741  Fit of $f_{2Fe}(x,Q^2)$ (filled markers, solid lines) and
1742  $f_{3Fe}(x,Q^2)$ (open markers, dashed lines) structure functions
1743  measured by the CDHSW \cite{CDHSW} (circles) and CCFR \cite{CCFR}
1744  (squares) experiments.
1745}
1746\label{nuFe}
1747\end{figure}
1748
1749For the $(\nu,\mu)$ amplitudes one can not apply the optical theorem,
1750To calculate the total cross sections, it is therefore necessary to
1751integrate the differential cross sections first over $x$ and then over
1752$Q^2$. For the $(\nu,\mu)$ reactions the differential cross section
1753can be integrated with good accuracy even for low energies because it
1754does not have the $\frac{1}{Q^4}$ factor of the boson propagator. The
1755quasi-elastic part of the total cross-section can be calculated for
1756$W<m_N+m_\pi$. The total $(\nu,\mu)$ cross-sections are shown in
1757Fig.\ref{totqe}(a,b). The dashed curve corresponds to the GRV \cite{GRV}
1758approximation of parton distributions and the dash-dotted curves
1759correspond to the KMRS \cite{KMRS} approximation. Neither approximation
1760fits low energies, because the perturbative calculations
1761give parton distributions only for $Q^2 > 1~GeV^2$. In \cite{Comby} an
1762attempt was made to freeze the DIS parton distributions at $Q^2=1$ and
1763to use them at low $Q^2$. The $W<1.4~GeV$ part of DIS was replaced by
1764the quasi-elastic and one pion production contributions, calculated on
1765the basis of the low energy models. The results of \cite{Comby} are
1766shown by the dotted lines. The nonperturbative CHIPS approximation
1767(solid curves) fits both total and quasi-elastic cross sections even at
1768low energies.
1769
1770\begin{figure}[tbp]
1771% \centerline{\epsfig{file=hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/vgam_c0606k.eps, height=4.5in, width=4.5in}}
1772%\resizebox{0.80\textwidth}{!}
1773%{
1774\includegraphics[angle=0,scale=0.60]{hadronic/theory_driven/ChiralInvariantPhaseSpace/plots/numu_cs.eps}
1775%\includegraphics[angle=0,scale=0.60]{plots/numu_cs.eps}
1776%}
1777\caption{
1778 Fit of total (a,b) and quasi-elastic (c,d) cross-sections of
1779 $(\nu,\mu)$ reactions (Geant4 database). The solid line
1780 is the CHIPS approximation (for other lines see text).
1781}
1782\label{totqe}
1783\end{figure}
1784
1785The quasi-elastic $(\nu,\mu)$ cross sections are shown in
1786Fig.\ref{totqe}(c,d). The CHIPS approximation (solid line) is compared
1787with calculations made in \cite{Comby} (the dotted line) and the best
1788fit of the $V-A$ theory was made in \cite{VMA} (the dashed lines). One
1789can see that CHIPS gives reasonable agreement.
1790
1791The $Q^2$ spectra for each energy are known as an intermediate result
1792of the calculation of total or quasi-elastic cross sections. For the
1793quasi-elastic interactions ($W<m_N+m_\pi$) one can use $x=1$ and
1794simulate a binary reaction. In the final state the recoil nucleon has
1795some probability of interacting with the nucleus. If $W>m_N+m_\pi$ the
1796$Q^2$ value is randomized and therefore the $Q^2$ dependent
1797coefficients (the number of partons in non-perturbative phase space
1798$N$, the Pomeron intercept $\alpha_P$, the fraction of the direct
1799interactions, etc.) can be calculated. Then for fixed energy and
1800$Q^2$ the neutrino interaction with quark-partons (directly or through
1801the Pomeron ladder) can be randomized and the secondary parton
1802distribution can be calculated. In vacuum or in nuclear matter the
1803secondary partons are creating quasmons \cite{CHIPS1,CHIPS2} which
1804decay to secondary hadrons.
1805
1806\section{Conclusion.}
1807
1808\noindent \qquad For users who would like to improve the
1809interaction part of the CHIPS event generator for their own
1810specific reactions, some advice concerning data presentation
1811is useful.
1812
1813It is a good idea to use a normalized invariant function $\rho (k)$%
1814\[
1815\rho =\frac{2E\cdot d^{3}\sigma }{\sigma _{tot}\cdot d^{3}p}\propto \frac{%
1816d\sigma }{\sigma _{tot}\cdot pdE},
1817\]
1818where $\sigma _{tot}$\ is the total cross section of the reaction.
1819The simple rule, then, is to divide the distribution over the hadron
1820energy $E$ by the momentum and by the reaction cross section. The argument
1821$k$ can be calculated for any outgoing hadron or fragment as
1822\[
1823k=\frac{E+p-B\cdot m_{N}}{2},
1824\]
1825which is the energy of the primary quark-parton. Because the spectrum
1826of the quark-partons is universal for all the secondary hadrons or
1827fragments, the distributions over this parameter have a similar shape
1828for all the secondaries. They should differ only when the kinematic
1829limits are approached or in the evaporation region. This feature is
1830useful for any analysis of experimental data, independent of the CHIPS
1831model.
1832
1833% The released version of the CHIPS event generator is not perfect yet,
1834% so in case of an error it is necessary to distinguish between the error
1835% of the test program ({\bf CHIPStest.cc}) and the error in the body of
1836% the generator.  Usually the error printing contains the address of the
1837% routine, but sometimes the name is abbreviated so that instead of
1838% {\bf G4QEnvironment}, {\bf G4Quasmon}, or {\bf G4QNucleus}, one will
1839% find {\bf G4QE}, {\bf G4Q}, or {\bf G4QN}. The errors in
1840% {\bf CHIPStest.cc} can be easily analyzed. Even if sometimes energy or
1841% charge is not conserved, this check can be excluded in order to keep
1842% going. On the other hand, if the error is in the body it is difficult
1843% to fix. The normal procedure is to uncomment the flags of the debugging
1844% prints in the corresponding part of the source code and try to find out
1845% the reason. Anyway inform authors about the error. Do not forget to attach the
1846% {\bf CHIPStest.cc} and the {\bf chipstest.in} files.
1847
1848Some concluding remarks should be made about the parameters of the model.
1849The main parameter, the critical temperature T$_{c}$, should not be varied.
1850A large set of data confirms the value {\bf 180 MeV} while from the mass
1851spectrum of hadrons it can be found more precisely as 182 MeV. The
1852clusterization parameter is {\bf 4.} which is just about 4$\pi /3.$
1853If the quark exchange starts at the mean distance between baryons in the
1854dense part of the nucleus, then the radius of the clusterization sphere is
1855twice the ''the radius of the space occupied by the baryon''.
1856It gives 8 for the parameter, but the space occupied by the baryon can not
1857be spherical; only cubic subdivision of space is possible so the factor
1858$\pi/6 $ appears. But this is a rough estimate, so {\bf 4} or even {\bf 5} 
1859can be tried.  The surface parameter $fD$ varies slightly with $A$,
1860growing from 0 to 0.04. For the present CHIPS version the recommended
1861parameters for low energies are:
1862
1863\begin{tabular}{llllllllll}
1864{\bf A} & {\bf T} & {\bf s/u} & {\bf eta} & {\bf noP} & {\bf fN} & {\bf fD}
1865& {\bf Cp} & {\bf rM} & {\bf sA} \\ 
1866{\bf Li} & 180. & 0.1 & 0.3 & 223 & .4 & .00 & 4. & 1.0 & 0.4 \\ 
1867{\bf Be} & 180. & 0.1 & 0.3 & 223 & .4 & .00 & 4. & 1.0 & 0.4 \\ 
1868{\bf  C} & 180. & 0.1 & 0.3 & 223 & .4 & .00 & 4. & 1.0 & 0.4 \\ 
1869{\bf  O} & 180. & 0.1 & 0.3 & 223 & .4 & .02 & 4. & 1.0 & 0.4 \\ 
1870{\bf  F} & 180. & 0.1 & 0.3 & 223 & .4 & .03 & 4. & 1.0 & 0.4 \\ 
1871{\bf Al} & 180. & 0.1 & 0.3 & 223 & .4 & .04 & 4. & 1.0 & 0.4 \\ 
1872{\bf Ca} & 180. & 0.1 & 0.3 & 223 & .4 & .04 & 4. & 1.0 & 0.4 \\ 
1873{\bf Cu} & 180. & 0.1 & 0.3 & 223 & .4 & .04 & 4. & 1.0 & 0.4 \\ 
1874{\bf Ta} & 180. & 0.1 & 0.3 & 223 & .4 & .04 & 4. & 1.0 & 0.4 \\ 
1875{\bf  U} & 180. & 0.1 & 0.3 & 223 & .4 & .04 & 4. & 1.0 & 0.4
1876\end{tabular}
1877
1878The vacuum hadronization weight parameter can be bigger for light
1879nuclei and smaller for heavy nuclei, but $1.0$ is a good guess. The
1880s/u parameter is not yet tuned, as it demands strange particle
1881production data. A guess is that if there are as many $u\bar{u}$ 
1882and $d\bar{d}$ pairs in the reaction as in the $p\bar{p}$ 
1883interaction, the parameter can be 0.1. In other cases it is closer
1884to 0.3 as in other event generators. But it is bestnot to touch any
1885parameters for the first experience with the CHIPS event generator.
1886Only the incident momentum, the PDG code of the projectile, and the
1887CHIPS style PDG code of the target need be changed.
1888
1889
1890\section{Status of this document}
1891
189202.12.05 neutrino interactions section and figures added by M.V. Kossov \\
189326.04.03 first four sections re-written by D.H. Wright \\
189401.01.01 created by M.V. Kossov and H.P. Wellisch \\
1895
1896%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%****************************
1897
1898\begin{latexonly}
1899
1900\begin{thebibliography}{}
1901
1902% \bibitem{STAND_ALONE}  \noindent M. V. Kossov, Manual for the CHIPS
1903% event generator,High Energy Accelerator Research Organization (KEK)
1904% Internal 2000-17, February 2001, H/R
1905
1906\bibitem{Parton_Models} B. Andersson, G. Gustafson, G. Ingelman,
1907T. Sj\"{o}strand, Phys. Rep. {\textbf{97}} (1983) 31
1908
1909\bibitem{CHIPS1}  \noindent P. V. Degtyarenko, M. V. Kossov, and H.P.
1910Wellisch, Chiral invariant phase space event generator, I.
1911Nucleon-antinucleon annihilation at rest, Eur. Phys. J. A 8 (2000) 217.
1912
1913\bibitem{CHIPS2}  P. V. Degtyarenko, M. V. Kossov, and H. P. Wellisch,
1914Chiral invariant phase space event generator, II.Nuclear pion capture at
1915rest, Eur. Phys. J. A 9 (2000) 411.
1916
1917\bibitem{CHIPS3}  P. V. Degtyarenko, M. V. Kossov, and H. P. Wellisch,
1918Chiral invariant phase space event generator, III Photonuclear reactions
1919below $\Delta $(3,3) excitation, Eur. Phys. J. A 9, (2000) 421.
1920
1921\bibitem{hadronMasses}  M. V. Kossov, Chiral invariant phase space
1922                model, I Masses of hadrons, Eur. Phys. J. A 14 (2002) 265.
1923
1924\bibitem{Chiral_Bag} C.A.Z. Vasconcellos et al., Eur. Phys. J. C
1925{\textbf{4}} (1998) 115;
1926G.A. Miller, A.W. Thomas, S. Theberge, Phys. Lett. B {\textbf{91}} (1980)
1927192;
1928C.E. de Tar, Phys. Rev. D {\textbf{24}} (1981) 752;
1929M.A.B. B\'{e}g, G.T. Garvey, Comments Nucl. Part. Phys. {\textbf{18}}
1930(1988) 1
1931
1932\bibitem{GENBOD} F. James, \textit{Monte Carlo Phase Space}, CERN 68-15
1933(1968)
1934
1935\bibitem{Feynman-Wilson}  K.G. Wilson, Proc. Fourteenth Scottish
1936Universities Summer School in Physics (1973), eds R. L. Crawford, R.
1937Jennings (Academic Press, New York, 1974)
1938
1939\bibitem{CH.PDG}  Monte Carlo particle numbering scheme, in:
1940 Particle Data Group, \textit{Review of Particle Physics},
1941 Eur. Phys. J. C {\textbf{3}} (1998) 180
1942
1943\bibitem{Hagedorn} R. Hagedorn, Nuovo Cimento Suppl. {\textbf{3}}
1944                (1965) 147
1945
1946\bibitem{photNuc} M. V. Kossov, Approximation of photonuclear
1947                interaction cross-sections, Eur. Phys. J. A 14 (2002) 377.
1948
1949\bibitem{GEANT4}  S. Giani et al., Geant4: Object Oriented Toolkit for
1950Simulation in HEP, LCB status report CERN/LHCC/98-44, November 1998.
1951
1952\bibitem{MC2000}  J. P. Wellisch, On hadronic models in GEANT4, Program
1953and Book of Abstracts.International Conference on Advanced Monte Carlo for
1954Radiation Physics, Particle Transport Simulation and Applications, 23-26
1955October 2000, IST,Lisbon, Portugal, p. 330.
1956
1957\bibitem{Duality} Yu.L. Dokshitzer, V.S. Fadin and V.A. Khoze,
1958Phys. Lett. {\textbf{115B}} (1982) 242L
1959
1960\bibitem{JETSET} T. Sj\"{o}strand, Comp. Phys. Comm. {\textbf{92}} (1994)
196174
1962
1963\bibitem{OZI}  S. Ocubo, Phys. Lett. {\textbf{5}} (1963) 165;
1964G. Zweig, CERN Preprint 8419/TH-412 (1964);
1965I. Iizuka, Progr. Theor. Phys. Suppl. {\textbf{37}} (1966) 21
1966
1967\bibitem{OZI_violation} V.E. Markushin, M.P. Locher,
1968Eur. Phys. J. A {\textbf{1}} (1998) 91
1969
1970\bibitem{pispectrum} J. Sedlak and V. Simak, Sov. J. Part. Nucl.
1971{\textbf{19}} (1988) 191
1972
1973\bibitem{pap_exdata}  C. Amsler, Rev.Mod.Phys. {\textbf{70}} (1998) 1293;
1974C. Amsler and F. Myher, Annu. Rev. Nucl. Part. Sci. {\textbf{41}} (1991)
1975219
1976
1977\bibitem{POPCORN} B. Andersson, G. Gustafson, T. Sj\"{o}strand, Nucl.
1978Phys. B {\textbf{197}}(1982) 45;
1979B. Andersson, G. Gustafson, T. Sj\"{o}strand, Physica Scripta {\textbf{32}}
1980(1985) 574
1981
1982\bibitem{Energy_Dep} P. Gregory et al., Nucl. Phys. B {\textbf{102}} (1976)
1983189
1984
1985\bibitem{K_parameter}  M.V. Kossov and L.M. Voronina, Preprint ITEP
1986165-84, Moscow (1984)
1987
1988\bibitem{FNAL}  V.I.~Efremenko et al., Phys. Rev. C \textbf{22} (1980) 700.
1989
1990\bibitem{FAS}  S.V~Boyarinov et al., Phys. At. Nucl. \textbf{56}
1991(1993) 72.
1992
1993\bibitem{TPC} P.V. Degtyarenko et al., Phys. Rev. C {\textbf{50}} (1994)
1994R541
1995
1996\bibitem{NN QEX}  K.~Maltman and N.~Isgur, Phys. Rev. D \textbf{29} (1984) 952.
1997
1998\bibitem{Kp QUEX}  K.~Maltman and N.~Isgur, Phys. Rev. D \textbf{34} (1986)
19991372.
2000
2001\bibitem{EMC}  P.~Hoodbhoy and R.~J.~Jaffe, Phys. Rev. D \textbf{35}
2002(1987) 113.
2003
2004\bibitem{QUEX}  N.~Isgur, Nucl. Phys. \textbf{A497} (1989) 91.
2005
2006%%%%%%%%%%%%%%%
2007
2008\bibitem{massSpectr}  M. V. Kossov, CHIPS: masses of hadrons. (be
2009published).
2010
2011\bibitem{eqPhotons}  L. D. Landau, E. M. Lifshitz, ``Course of
2012Theoretical Physics'' v.4, part 1, ``Relativistic Quantum Theory'',
2013Pergamon Press, paragraph 96, The method of equivalent photons.
2014
2015\bibitem{Shadowing}  J. Eickmeyer et al. Phys. Rev. Letters {\bf 36 }(1976)
2016289-291.
2017
2018\bibitem{Guilo}  D'Agostini, Hard Scattering Process in High Energy
2019Gamma-Induced Reactions, DESY 94-169, September 1994.
2020
2021\bibitem{Electronuc}  F. W. Brasse et al. Nuclear Physics {\bf B39 }(1972)
2022421-431.
2023
2024\bibitem{WA25} D. Allasia {\textit {et~al}}, Z. Phys C {\textbf{28}},
2025                321 (1985)
2026
2027\bibitem{CDHSW} P. Berg {\textit {et~al}}, Z. Phys C {\textbf{49}},
2028                187 (1991)
2029
2030\bibitem{CCFR} E. Oltman {\textit {et~al}}, Z. Phys C {\textbf{53}},
2031                51 (1992)
2032
2033\bibitem{GRV} M. Gl\"uck {\textit {et~al}}, Z. Phys. C {\textbf{48}},
2034                471 (1990)
2035
2036\bibitem{KMRS} J. Kviecinski {\textit {et~al}}, Phys. Rev. D {\textbf{42}},
2037                3645 (1990)
2038
2039\bibitem{Comby} P. Lipari {\textit {et~al}}, Phys. Rev. Let. {\textbf{74}},
2040                4384 (1995)
2041
2042\bibitem{VMA} S.V. Belikov {\textit {et~al}}, Z. Phys. A {\textbf{320}},
2043                625 (1985)
2044
2045\bibitem{PenCB}  A. Lepretre et al. Nuclear Physics {\bf A390 }(1982)
2046221-239.
2047
2048\bibitem{DINREG} P.V. Degtyarenko and M.V. Kossov, Preprint ITEP
204911-92, Moscow (1992)
2050
2051\bibitem{ARGUS} P.V. Degtyarenko et al., Z. Phys. A - Atomic Nuclei,
2052{\textbf{335}} (1990) 231
2053
2054\bibitem{GDINR} P.V. Degtyarenko, \textit{Applications of the photonuclear
2055fragmentation model to radiation protection problems}, in:
2056Proceedings of Second Specialist's Meeting on Shielding Aspects of
2057Accelerators, Targets and Irradiation Facilities (SATIF-2), CERN,
2058Geneva, Switzerland, 12-13 October 1995, published by Nuclear Energy
2059Agency, Organization for Economic Co-operation and Development, pages
206067 - 91 (1996)
2061
2062\bibitem{sum_rules}  C. Bernard, A. Duncan, J. LoSecco, and S. Weinberg,
2063Phys. Rev. D \textbf{12} (1975) 792;
2064
2065 E. Poggio, H. Quinn, and S. Weinberg, Phys. Rev. D \textbf{13} (1976) 1958
2066
2067\bibitem{MIPHI}  A.~I.~Amelin et al., ``Energy spectra of charged particles
2068in the reaction of $\pi^-$ absorption at rest by $^{6,7}$Li, $^{9}$Be, $%
2069^{10,11}$B, $^{12}$C, $^{28}$Si, $^{40}$Ca, $^{59}$Co, $^{93}$Nb, $%
2070^{114,117,120,124}$Sn, $^{169}$Tm, $^{181}$Ta and $^{209}$Bi nuclei'',
2071Moscow Physics and Engineering Institute Preprint No. 034-90, Moscow, 1990.
2072
2073\bibitem{Mechtersheimer}  G.~Mechtersheimer et al., Nucl. Phys.
2074                          \textbf{A324} (1979) 379.
2075
2076\bibitem{Cernigoi}  C.~Cernigoi et al., Nucl. Phys. \textbf{A456} (1986) 599.
2077
2078\bibitem{Madey}  R.~Madey et al., Phys. Rev. C \textbf{25} (1982) 3050.
2079
2080\bibitem{Ryckbosch}  D.~Ryckbosch et al., Phys. Rev. C \textbf{42} (1990) 444.
2081
2082\bibitem{Ahrens}  J.~Ahrens et al.,  Nucl. Phys. \textbf{A446} (1985) 229c.
2083
2084\bibitem{Ryckebusch} Jan~Ryckebusch et al., Phys. Rev. C \textbf{49} (1994)
20852704.
2086
2087\bibitem{Abeele} C.~Van~den~Abeele; private communication cited
2088in the reference: Jan~Ryckebusch et al., Phys. Rev. C \textbf{49} (1994)
20892704.
2090
2091\bibitem{Harty} P.D.~Harty et al. (unpublished);
2092private communication cited
2093in the reference: Jan~Ryckebusch et al., Phys. Rev. C \textbf{49} (1994)
20942704.
2095
2096\bibitem{Bates}  L.B.~Weinstein et al., Phys. Rev. Lett. \textbf{64} (1990)
20971646.
2098
2099\bibitem{Lorentzian}  J.P.~Jeukenne and C.~Mahaux, Nucl. Phys. A \textbf{394}
2100(1983) 445.
2101
2102\end{thebibliography}
2103
2104\end{latexonly}
2105
2106\begin{htmlonly}
2107
2108\section{Bibliography}
2109
2110\begin{enumerate}
2111% \bibitem{STAND_ALONE}  \noindent M. V. Kossov, Manual for the CHIPS
2112% event generator,High Energy Accelerator Research Organization (KEK)
2113% Internal 2000-17, February 2001, H/R
2114
2115\item B. Andersson, G. Gustafson, G. Ingelman,
2116T. Sj\"{o}strand, Phys. Rep. {\textbf{97}} (1983) 31
2117
2118\item  \noindent P. V. Degtyarenko, M. V. Kossov, and H.P.
2119Wellisch, Chiral invariant phase space event generator, I.
2120Nucleon-antinucleon annihilation at rest, Eur. Phys. J. A {\bf 8}, 217-222
2121(2000).
2122
2123\item P. V. Degtyarenko, M. V. Kossov, and H. P. Wellisch,
2124Chiral invariant phase space event generator, II.Nuclear pion capture at
2125rest, Eur. Phys. J. A 9, (2001).
2126
2127\item P. V. Degtyarenko, M. V. Kossov, and H. P. Wellisch,
2128Chiral invariant phase space event generator, III Photonuclear reactions
2129below $\Delta $(3,3) excitation, Eur. Phys. J. A 9, (2001).
2130
2131\item C.A.Z. Vasconcellos et al., Eur. Phys. J. C
2132{\textbf{4}} (1998) 115;
2133G.A. Miller, A.W. Thomas, S. Theberge, Phys. Lett. B {\textbf{91}} (1980)
2134192;
2135C.E. de Tar, Phys. Rev. D {\textbf{24}} (1981) 752;
2136M.A.B. B\'{e}g, G.T. Garvey, Comments Nucl. Part. Phys. {\textbf{18}}
2137(1988) 1
2138
2139\item F. James, \textit{Monte Carlo Phase Space}, CERN 68-15
2140(1968)
2141
2142\item K.G. Wilson, Proc. Fourteenth Scottish
2143Universities Summer School in Physics (1973), eds R. L. Crawford, R.
2144Jennings (Academic Press, New York, 1974)
2145
2146\item  Monte Carlo particle numbering scheme, in:
2147 Particle Data Group, \textit{Review of Particle Physics},
2148 Eur. Phys. J. C {\textbf{3}} (1998) 180
2149
2150\item R. Hagedorn, Nuovo Cimento Suppl. {\textbf{3}} (1965) 147
2151
2152\item S. Giani et al., Geant4: Object Oriented Toolkit for
2153Simulation in HEP, LCB status report CERN/LHCC/98-44, November 1998.
2154
2155\item J. P. Wellisch, On hadronic models in GEANT4, Program
2156and Book of Abstracts.International Conference on Advanced Monte Carlo for
2157Radiation Physics, Particle Transport Simulation and Applications, 23-26
2158October 2000, IST,Lisbon, Portugal, p. 330.
2159
2160\item Yu.L. Dokshitzer, V.S. Fadin and V.A. Khoze,
2161Phys. Lett. {\textbf{115B}} (1982) 242L
2162
2163\item T. Sj\"{o}strand, Comp. Phys. Comm. {\textbf{92}} (1994)
216474
2165
2166\item S. Ocubo, Phys. Lett. {\textbf{5}} (1963) 165;
2167G. Zweig, CERN Preprint 8419/TH-412 (1964);
2168I. Iizuka, Progr. Theor. Phys. Suppl. {\textbf{37}} (1966) 21
2169
2170\item V.E. Markushin, M.P. Locher,
2171Eur. Phys. J. A {\textbf{1}} (1998) 91
2172
2173\item J. Sedlak and V. Simak, Sov. J. Part. Nucl.
2174{\textbf{19}} (1988) 191
2175
2176\item C. Amsler, Rev.Mod.Phys. {\textbf{70}} (1998) 1293;
2177C. Amsler and F. Myher, Annu. Rev. Nucl. Part. Sci. {\textbf{41}} (1991)
2178219
2179
2180\item B. Andersson, G. Gustafson, T. Sj\"{o}strand, Nucl.
2181Phys. B {\textbf{197}}(1982) 45;
2182B. Andersson, G. Gustafson, T. Sj\"{o}strand, Physica Scripta {\textbf{32}}
2183(1985) 574
2184
2185\item P. Gregory et al., Nucl. Phys. B {\textbf{102}} (1976)
2186189
2187
2188\item M.V. Kossov and L.M. Voronina, Preprint ITEP
2189165-84, Moscow (1984)
2190
2191\item V.I.~Efremenko et al., Phys. Rev. C \textbf{22} (1980) 700.
2192
2193\item S.V~Boyarinov et al., Phys. At. Nucl. \textbf{56}
2194(1993) 72.
2195
2196\item P.V. Degtyarenko et al., Phys. Rev. C {\textbf{50}} (1994)
2197R541
2198
2199\item K.~Maltman and N.~Isgur, Phys. Rev. D \textbf{29} (1984) 952.
2200
2201\item K.~Maltman and N.~Isgur, Phys. Rev. D \textbf{34} (1986)
22021372.
2203
2204\item P.~Hoodbhoy and R.~J.~Jaffe, Phys. Rev. D \textbf{35}
2205(1987) 113.
2206
2207\item N.~Isgur, Nucl. Phys. \textbf{A497} (1989) 91.
2208
2209%%%%%%%%%%%%%%%
2210
2211\item M. V. Kossov, CHIPS: masses of hadrons. (be
2212published).
2213
2214\item L. D. Landau, E. M. Lifshitz, ``Course of
2215Theoretical Physics'' v.4, part 1, ``Relativistic Quantum Theory'',
2216Pergamon Press, paragraph 96, The method of equivalent photons.
2217
2218\item J. Eickmeyer et al. Phys. Rev. Letters {\bf 36 }(1976)
2219289-291.
2220
2221\item D'Agostini, Hard Scattering Process in High Energy
2222Gamma-Induced Reactions, DESY 94-169, September 1994.
2223
2224\item  F. W. Brasse et al. Nuclear Physics {\bf B39 }(1972)
2225421-431.
2226
2227\item A. Lepretre et al. Nuclear Physics {\bf A390 }(1982)
2228221-239.
2229
2230\item P.V. Degtyarenko and M.V. Kossov, Preprint ITEP
223111-92, Moscow (1992)
2232
2233\item P.V. Degtyarenko et al., Z. Phys. A - Atomic Nuclei,
2234{\textbf{335}} (1990) 231
2235
2236\item P.V. Degtyarenko, \textit{Applications of the photonuclear
2237fragmentation model to radiation protection problems}, in:
2238Proceedings of Second Specialist's Meeting on Shielding Aspects of
2239Accelerators, Targets and Irradiation Facilities (SATIF-2), CERN,
2240Geneva, Switzerland, 12-13 October 1995, published by Nuclear Energy
2241Agency, Organization for Economic Co-operation and Development, pages
224267 - 91 (1996)
2243
2244\item C. Bernard, A. Duncan, J. LoSecco, and S. Weinberg,
2245Phys. Rev. D \textbf{12} (1975) 792;
2246
2247 E. Poggio, H. Quinn, and S. Weinberg, Phys. Rev. D \textbf{13} (1976) 1958
2248
2249\item A.~I.~Amelin et al., ``Energy spectra of charged particles
2250in the reaction of $\pi^-$ absorption at rest by $^{6,7}$Li, $^{9}$Be, $%
2251^{10,11}$B, $^{12}$C, $^{28}$Si, $^{40}$Ca, $^{59}$Co, $^{93}$Nb, $%
2252^{114,117,120,124}$Sn, $^{169}$Tm, $^{181}$Ta and $^{209}$Bi nuclei'',
2253Moscow Physics and Engineering Institute Preprint No. 034-90, Moscow, 1990.
2254
2255\item G.~Mechtersheimer et al., Nucl. Phys.
2256                          \textbf{A324} (1979) 379.
2257
2258\item C.~Cernigoi et al., Nucl. Phys. \textbf{A456} (1986) 599.
2259
2260\item R.~Madey et al., Phys. Rev. C \textbf{25} (1982) 3050.
2261
2262\item D.~Ryckbosch et al., Phys. Rev. C \textbf{42} (1990) 444.
2263
2264\item J.~Ahrens et al.,  Nucl. Phys. \textbf{A446} (1985) 229c.
2265
2266\item Jan~Ryckebusch et al., Phys. Rev. C \textbf{49} (1994)
22672704.
2268
2269\item C.~Van~den~Abeele; private communication cited
2270in the reference: Jan~Ryckebusch et al., Phys. Rev. C \textbf{49} (1994)
22712704.
2272
2273\item P.D.~Harty et al. (unpublished);
2274private communication cited
2275in the reference: Jan~Ryckebusch et al., Phys. Rev. C \textbf{49} (1994)
22762704.
2277
2278\item L.B.~Weinstein et al., Phys. Rev. Lett. \textbf{64} (1990)
22791646.
2280
2281\item J.P.~Jeukenne and C.~Mahaux, Nucl. Phys. A \textbf{394}
2282(1983) 445.
2283
2284\end{enumerate}
2285
2286\end{htmlonly}
2287
2288%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2289%
2290%\end{document}
Note: See TracBrowser for help on using the repository browser.