source: trunk/documents/UserDoc/UsersGuides/PhysicsReferenceManual/latex/hadronic/theory_driven/ChiralInvariantPhaseSpace/PhotoElectroNucCrsSctn.tex

Last change on this file was 1208, checked in by garnier, 15 years ago

CVS update

File size: 20.4 KB
Line 
1\chapter{Cross-sections in Photonuclear and Electronuclear Reactions}
2\section{Approximation of Photonuclear Cross Sections.}
3
4The photonuclear cross sections parameterized in the
5{\tt G4PhotoNuclearCrossSection} class cover all incident photon energies from
6the hadron production threshold upward.  The parameterization is subdivided
7into five energy regions, each corresponding to the physical process that
8dominates it.
9
10\begin{itemize}
11
12\item The Giant Dipole Resonance (GDR) region, depending on the nucleus,
13      extends from 10 Mev up to 30 MeV.  It usually consists of one large
14      peak, though for some nuclei several peaks appear.
15 
16\item The ``quasi-deuteron'' region extends from around 30 MeV up to the
17      pion threshold and is characterized by small cross sections and a broad,
18      low peak.
19
20\item The $\Delta$ region is characterized by the dominant peak in the
21      cross section which extends from the pion threshold to 450 MeV.
22
23\item The Roper resonance region extends from roughly 450 MeV to 1.2 GeV.
24      The cross section in this region is not strictly identified with the
25      real Roper resonance because other processes also occur in this region. 
26
27\item The Reggeon-Pomeron region extends upward from 1.2 GeV.
28
29\end{itemize}
30
31\noindent 
32In the GEANT4 photonuclear data base there are about 50 nuclei for which the
33photonuclear absorption cross sections have been measured in the above
34energy ranges.  For low energies this number could be enlarged, because for
35heavy nuclei the neutron photoproduction cross section is close to the total
36photo-absorption cross section.  Currently, however, 14 nuclei are used in
37the parameterization: $^1$H, $^2$H, $^4$He, $^6$Li, $^7$Li, $^9$Be,
38$^{12}$C, $^{16}$O, $^{27}$Al, $^{40}$Ca, Cu, Sn, Pb, and U.  The resulting
39cross section is a function of $A$ and $e = log(E_\gamma)$, where $E_\gamma$ 
40is the energy of the incident photon.  This function is the sum of the
41components which parameterize each energy region. \\
42
43\noindent
44The cross section in the GDR region can be described as the sum of two
45peaks,
46\begin{equation}
47GDR(e) = th(e,b_1,s_1)\cdot exp(c_1-p_1\cdot e) +
48         th(e,b_2,s_2)\cdot exp(c_2-p_2\cdot e) .
49\end{equation}
50The exponential parameterizes the falling edge of the resonance which
51behaves like a power law in $E_\gamma$.  This behavior is expected from 
52the CHIPS model, which includes the nonrelativistic phase space of nucleons
53to explain evaporation.  The function
54\begin{equation}
55th(e,b,s) = \frac{1}{1+exp(\frac{b-e}{s})} ,
56\end{equation}
57describes the rising edge of the resonance.  It is the
58nuclear-barrier-reflection function and behaves like a threshold, cutting off
59the exponential.  The exponential powers $p_1$ and $p_2$ are
60
61\begin{eqnarray*}
62 p_1 = 1, p_2 = 2 \mbox{\hspace*{1mm} for \hspace*{7mm} $A < 4$ }\\ 
63 p_1 = 2, p_2 = 4 \mbox{\hspace*{1mm} for \hspace*{1mm} $4 \le A < 8$ }\\
64 p_1 = 3, p_2 = 6 \mbox{\hspace*{1mm} for $8 \le A < 12$} \\
65 p_1 = 4, p_2 = 8 \mbox{\hspace*{1mm} for \hspace*{6mm} $A \ge 12$} .
66\end{eqnarray*}
67 
68\noindent
69The $A$-dependent parameters $b_i$, $c_i$ and $s_i$ were found for each of
70the 14 nuclei listed above and interpolated for other nuclei. \\
71
72\noindent
73The $\Delta$ isobar region was parameterized as
74\begin{equation}
75\Delta (e,d,f,g,r,q)=\frac{d\cdot th(e,f,g)}{1+r\cdot (e-q)^2},
76\label{Isobar}
77\end{equation}
78where $d$ is an overall normalization factor.  $q$ can be interpreted as the
79energy of the $\Delta$ isobar and $r$ can be interpreted as the inverse of
80the $\Delta$ width.  Once again $th$ is the threshold function.  The
81$A$-dependence of these parameters is as follows:
82
83\begin{itemize}
84\item  $d=0.41\cdot A$ (for $^1$H it is 0.55, for $^2$H it is 0.88),
85which means that the $\Delta$ yield is proportional
86to $A$;
87
88\item  $f=5.13-.00075\cdot A$$exp(f)$ shows how the pion threshold depends
89on $A$.  It is clear that the threshold becomes 140 MeV only for uranium;
90for lighter nuclei it is higher.
91
92\item  $g = 0.09$ for $A \ge 7$ and 0.04 for $A < 7$;
93
94\item  $q=5.84-\frac{.09}{1+.003\cdot A^2}$, which means that the ``mass''
95of the $\Delta$ isobar moves to lower energies;
96
97\item $r=11.9 - 1.24\cdot log(A)$$r$ is 18.0 for $^1$H.
98The inverse width becomes smaller with $A$, hence the width increases.
99
100\end{itemize}
101The $A$-dependence of the $f$, $q$ and $r$ parameters is due to the
102$\Delta+N\rightarrow N+N$ reaction, which can take place in the nuclear
103medium below the pion threshold. \\
104
105\noindent
106The quasi-deuteron contribution was parameterized with the same form as the
107$\Delta$ contribution but without the threshold function:
108\begin{equation}
109QD(e,v,w,u)=\frac {v}{1+w\cdot (e-u)^2}.
110\label{QuasiD}
111\end{equation}
112For $^1$H and $^2$H the quasi-deuteron contribution is almost zero.  For
113these nuclei the third baryonic resonance was used instead, so the
114parameters for these two nuclei are quite different, but trivial.
115The parameter values are given below.
116
117\begin{itemize}
118
119\item  $v = \frac {exp(-1.7+a\cdot 0.84)}{1+exp(7\cdot (2.38-a))}$, where
120$a=log(A)$.  This shows that the $A$-dependence in the quasi-deuteron
121region is stronger than $A^{0.84}$.  It is clear from the denominator that
122this contribution is very small for light nuclei (up to $^6$Li or $^7$Li).
123For $^1$H it is 0.078 and for $^2$H it is 0.08, so the delta contribution
124does not appear to be growing.  Its relative contribution disappears with
125$A$.
126
127\item  $u = 3.7$ and $w = 0.4$.  The experimental information is not
128sufficient to determine an $A$-dependence for these parameters.  For both
129$^1$H and $^2$H $u = 6.93$ and $w = 90$, which may indicate contributions
130from the $\Delta$(1600) and $\Delta$(1620).
131
132\end{itemize}
133
134\noindent
135The transition Roper contribution was parameterized using the same form
136as the quasi-deuteron contribution:
137\begin{equation}
138Tr(e,v,w,u)=\frac {v}{1+w\cdot (e-u)^2}.
139\label{Transition}
140\end{equation}
141Using $a=log(A)$, the values of the parameters are
142
143\begin{itemize}
144
145\item  $v = exp(-2.+a\cdot 0.84)$.  For $^1$H it is 0.22 and for $^2$H
146it is 0.34.
147
148\item $u = 6.46+a\cdot 0.061$ (for $^1$H and for $^2$H it is 6.57), so the
149``mass'' of the Roper moves higher with $A$.
150
151\item $w = 0.1+a\cdot 1.65$.  For $^1$H it is 20.0 and for $^2$H it is 15.0).
152\end{itemize}
153
154
155\noindent
156The Regge-Pomeron contribution was parametrized as follows:
157\begin{equation}
158RP(e,h)=h\cdot th(7.,0.2)\cdot (0.0116\cdot exp(e\cdot 0.16)+0.4\cdot exp(-e\cdot 0.2)),
159\label{Regge}
160\end{equation}
161where $h=A\cdot exp(-a\cdot (0.885+0.0048\cdot a))$ and, again,
162$a = log(A)$.  The first exponential in Eq.~\ref{Regge} describes the Pomeron
163contribution while the second describes the Regge contribution.
164
165%The result of the approximation is shown in Fig.~\ref{photonuc} for 6
166% of the 14 nuclei.
167%\begin{figure}
168%  \resizebox{1.00\textwidth}{!}
169%{
170%% hpw @@@@@   \includegraphics{photonuclear.eps}
171%}
172%\caption{Photoabsorbtion cross sections for 6 basic nuclei.}
173%\label{photonuc}
174%\end{figure}
175
176
177\section{Electronuclear Cross Sections and Reactions}
178
179Electronuclear reactions are so closely connected with photonuclear reactions
180that they are sometimes called ``photonuclear'' because the one-photon
181exchange mechanism dominates in electronuclear reactions.  In this sense
182electrons can be replaced by a flux of equivalent photons.  This is not
183completely true, because at high energies the Vector Dominance Model (VDM) or
184diffractive mechanisms are possible, but these types of reactions are beyond
185the scope of this discussion.
186
187\subsection{Common Notation for Different Approaches to Electronuclear
188Reactions}
189\label{threeApproaches}
190
191The Equivalent Photon Approximation (EPA) was proposed by
192E. Fermi \cite{Fermi} and developed by C. Weizsacker and E. Williams
193\cite{WeiWi} and by L. Landau and E. Lifshitz \cite{LanLif}. The
194covariant form of the EPA method was developed in Refs. \cite{Pomer} and
195\cite{Grib}.  When using this method it is necessary to take into account
196that real photons are always transversely polarized while virtual photons
197may be longitudinally polarized.  In general the differential cross section
198of the electronuclear interaction can be written as
199\begin{equation}
200\frac{d^2\sigma}{dydQ^2}=\frac{\alpha}{\pi Q^2}(S_{TL}\cdot(\sigma_T
201+\sigma_L)-S_L\cdot\sigma_L),
202\label{elNuc}
203\end{equation}
204where
205\begin{equation}
206S_{TL}=y\frac{1-y+\frac{y^2}{2}+\frac{Q^2}{4E^2}
207-\frac{m^2_e}{Q^2}(y^2+\frac{Q^2}{E^2})}{y^2+\frac{Q^2}{E^2}},
208\label{STL}
209\end{equation}
210\begin{equation}
211S_L=\frac{y}{2}(1-\frac{2m_e^2}{Q^2}).
212\label{SL}
213\end{equation}
214The differential cross section of the electronuclear scattering can be
215rewritten as
216\begin{equation}
217\frac{d^2\sigma_{eA}}{dydQ^2}=\frac{\alpha y}{\pi Q^2}\left(\frac{(1-\frac{y}{2})^2}
218{y^2+\frac{Q^2}{E^2}}+\frac{1}{4}-\frac{m^2_e}{Q^2}\right)\sigma_{\gamma^*A},
219\label{difBase}
220\end{equation}
221where $\sigma_{\gamma^*A}=\sigma_{\gamma A}(\nu)$ for small $Q^2$ and
222must be approximated as a function of $\epsilon$, $\nu$, and $Q^2$ for
223large $Q^2$.  Interactions of longitudinal photons are included in the
224effective $\sigma_{\gamma^*A}$ cross section through the $\epsilon$ factor,
225but in the present GEANT4 method, the cross section of virtual photons is
226considered to be $\epsilon$-independent.  The electronuclear problem, with
227respect to the interaction of virtual photons with nuclei, can thus be split
228in two.  At small $Q^2$ it is possible to use the $\sigma_\gamma(\nu)$ cross
229section.  In the $Q^2>>m^2_e$ region it is necessary to calculate the effective
230$\sigma_{\gamma^*}(\epsilon,\nu,Q^2)$ cross section. \\
231
232\noindent 
233Following the EPA notation, the differential cross section of electronuclear
234scattering can be related to the number of equivalent photons
235$dn=\frac{d\sigma}{\sigma_{\gamma^*}}$.  For $y<<1$ and $Q^2<4m^2_e$ the
236canonical method \cite{encs.eqPhotons} leads to the simple result
237\begin{equation}
238\frac{ydn(y)}{dy}=-\frac{2\alpha}{\pi}ln(y).
239\label{neq}
240\end{equation}
241In \cite{Budnev} the integration over $Q^2$ for $\nu^2>>Q^2_{max}\simeq m^2_e$
242leads to
243\begin{equation}
244\frac{ydn(y)}{dy}=-\frac{\alpha}{\pi}\left(
245\frac{1+(1-y)^2}{2}ln(\frac{y^2}{1-y})+(1-y)\right).
246\label{lowQ2EP}
247\end{equation}
248In the $y<<1$ limit this formula converges to Eq.(\ref{neq}).  But the
249correspondence with Eq.(\ref{neq}) can be made more explicit if the exact
250integral
251\begin{equation}
252\frac{ydn(y)}{dy}=\frac{\alpha}{\pi}\left(
253\frac{1+(1-y)^2}{2}l_1-(1-y)l_2-\frac{(2-y)^2}{4}l_3\right),
254\label{diff}
255\end{equation}
256where $l_1=ln\left(\frac{Q^2_{max}}{Q^2_{min}}\right)$,
257$l_2=1-\frac{Q^2_{max}}{Q^2_{min}}$,
258$l_3=ln\left(\frac{y^2+Q^2_{max}/E^2}{y^2+Q^2_{min}/E^2}\right)$,
259$Q^2_{min}=\frac{m_e^2y^2}{1-y}$,
260is calculated for
261\begin{equation}
262Q^2_{max(m_e)}=\frac{4m^2_e}{1-y}.
263\label{Q2me}
264\end{equation}
265The factor $(1-y)$ is used arbitrarily to keep $Q^2_{max(m_e)}>Q^2_{min}$,
266which can be considered as a boundary between the low and high $Q^2$ 
267regions.  The full transverse photon flux can be calculated as an integral
268of Eq.(\ref{diff}) with the maximum possible upper limit
269\begin{equation}
270Q^2_{max(max)}=4E^2(1-y).
271\label{Q2max}
272\end{equation}
273The full transverse photon flux can be approximated by
274\begin{equation}
275\frac{ydn(y)}{dy}=-\frac{2\alpha}{\pi}\left(
276\frac{(2-y)^2+y^2}{2}ln(\gamma)-1\right),
277\label{neqHQ}
278\end{equation}
279where $\gamma=\frac{E}{m_e}$.  It must be pointed out that neither this
280approximation nor Eq.(\ref{diff}) works at $y\simeq 1$;  at this point
281$Q^2_{max(max)}$ becomes smaller than $Q^2_{min}$.  The formal limit of the
282method is $y<1-\frac{1}{2\gamma}$. \\
283\begin{figure}[tbp]
284\resizebox{0.95\textwidth}{!}
285{
286   \includegraphics{hadronic/theory_driven/ChiralInvariantPhaseSpace/Fig12.eps}
287}
288\caption{Relative contribution of equivalent photons with small $Q^2$
289to the total ``photon flux'' for (a) $1~GeV$ electrons and (b) $10~GeV$
290electrons.  In figures (c) and (d) the equivalent photon distribution
291$dn(\nu,Q^2)$ is multiplied by the photonuclear cross section
292$\sigma_{\gamma^*}(K,Q^2)$ and integrated over $Q^2$ in two regions:
293the dashed lines are integrals over the low-$Q^2$ equivalent
294photons (under the dashed line in the first two figures), and the
295solid lines are integrals over the high-$Q^2$ equivalent photons (above
296the dashed lines in the first two figures).}
297\label{nSigma}
298\end{figure}
299
300\noindent 
301In Fig.~\ref{nSigma}(a,b) the energy distribution for the equivalent photons
302is shown.  The low-$Q^2$ photon flux with the upper limit defined by
303Eq.(\ref{Q2me})) is compared with the full photon flux.  The
304low-$Q^2$ photon flux is calculated using Eq.(\ref{neq}) (dashed lines) and
305using Eq.(\ref{diff}) (dotted lines).  The full photon
306flux is calculated using Eq.(\ref{neqHQ}) (the solid lines) and using
307Eq.(\ref{diff}) with the upper limit defined by Eq.(\ref{Q2max}) (dash-dotted
308lines, which differ from the solid lines only at $\nu\approx E_e$).  The
309conclusion is that in order to calculate either the number of low-$Q^2$ 
310equivalent photons or the total number of equivalent photons one can use the
311simple approximations given by Eq.(\ref{neq}) and Eq.(\ref{neqHQ}),
312respectively, instead of using Eq.(\ref{diff}), which cannot be integrated
313over $y$ analytically.  Comparing the low-$Q^2$ photon flux and the total
314photon flux it is possible to show that the low-$Q^2$ photon flux is about
315half of the the total.  From the interaction point of view the decrease of
316$\sigma_{\gamma*}$ with increasing $Q^2$ must be taken into account.  The
317cross section reduction for the virtual photons with large $Q^2$ is governed
318by two factors.  First, the cross section drops with $Q^2$ as the squared
319dipole nucleonic form-factor
320\begin{equation}
321G^2_D(Q^2)\approx\left( 1+\frac{Q^2}{(843~MeV)^2}\right)^{-2}.
322\label{G2}
323\end{equation}
324Second, all the thresholds of the $\gamma A$ reactions are shifted to higher
325$\nu$ by a factor $\frac{Q^2}{2M}$, which is the difference between the $K$ 
326and $\nu$ values.  Following the method proposed in \cite{Brasse}
327the $\sigma_{\gamma^*}$ at large $Q^2$ can be approximated as
328\begin{equation}
329\sigma_{\gamma*}=(1-x)\sigma_\gamma(K)G^2_D(Q^2)e^{b(\epsilon,K)\cdot
330r+c(\epsilon,K)\cdot r^3},
331\label{abc}
332\end{equation}
333where $r=\frac{1}{2}ln(\frac{Q^2+\nu^2}{K^2})$.  The $\epsilon$-dependence of
334the $a(\epsilon,K)$ and $b(\epsilon,K)$ functions is weak, so for simplicity
335the $b(K)$ and $c(K)$ functions are averaged over $\epsilon$.  They can be
336approximated as
337\begin{equation}
338b(K)\approx\left(\frac{K}{185~MeV}\right)^{0.85},
339\label{bk}
340\end{equation}
341and
342\begin{equation}
343c(K)\approx-\left(\frac{K}{1390~MeV}\right)^{3}.
344\label{ck}
345\end{equation}
346
347\noindent 
348The result of the integration of the photon flux multiplied by the
349cross section approximated by Eq.(\ref{abc}) is shown in
350Fig.~\ref{nSigma}(c,d).  The integrated cross sections are shown
351separately for the low-$Q^2$ region ($Q^2<Q^2_{max(m_e)}$, dashed
352lines) and for the high-$Q^2$ region ($Q^2>Q^2_{max(m_e)}$, solid
353lines).  These functions must be integrated over $ln(\nu)$, so it is
354clear that because of the Giant Dipole Resonance contribution, the
355low-$Q^2$ part covers more than half the total $eA\rightarrow hadrons$ 
356cross section.  But at $\nu>200~MeV$, where the hadron multiplicity
357increases, the large $Q^2$ part dominates.  In this sense, for a better
358simulation of the production of hadrons by electrons, it is necessary to
359simulate the high-$Q^2$ part as well as the low-$Q^2$ part. \\
360
361\noindent 
362Taking into account the contribution of high-$Q^2$ photons it is possible to
363use Eq.(\ref{neqHQ}) with the over-estimated
364$\sigma_{\gamma^*A}=\sigma_{\gamma A}(\nu)$ cross section.  The slightly
365over-estimated electronuclear cross section is
366\begin{equation}
367\sigma^*_{eA}=(2ln(\gamma)-1)\cdot J_1-\frac{ln(\gamma)}{E_e}
368\left( 2J_2-\frac{J_3}{E_e} \right).
369\label{eleNucHQ}
370\end{equation}
371where
372\begin{equation}
373J_1(E_e)=\frac{\alpha}{\pi}\int^{E_e}\sigma_{\gamma A}(\nu)dln(\nu)
374\label{J1}
375\end{equation}
376\begin{equation}
377J_2(E_e)=\frac{\alpha}{\pi}\int^{E_e}\nu\sigma_{\gamma A}(\nu)dln(\nu),
378\label{J2}
379\end{equation}
380and
381\begin{equation}
382J_3(E_e)=\frac{\alpha}{\pi}\int^{E_e}\nu^2\sigma_{\gamma A}(\nu )dln(\nu).
383\label{J3}
384\end{equation}
385The equivalent photon energy $\nu=yE$ can be obtained for a particular
386random number $R$ from the equation
387\begin{equation}
388R=\frac{(2ln(\gamma)-1)J_1(\nu)-\frac{ln(\gamma)}{E_e}(2J_2(\nu)-\frac{J_3(\nu)}{E_e})}
389{(2ln(\gamma)-1)J_1(E_e)-\frac{ln(\gamma)}{E_e}(2J_2(E_e)-\frac{J_3(E_e)}{E_e})}.
390\label{RnuHH}
391\end{equation}
392Eq.(\ref{diff}) is too complicated for the randomization of $Q^2$ but
393there is an easily randomized formula which approximates Eq.(\ref{diff})
394above the hadronic threshold ($E>10~MeV$).  It reads
395\begin{equation}
396\frac{\pi}{\alpha D(y)}\int^{Q^2}_{Q^2_{min}}\frac{ydn(y,Q^2)}{dydQ^2}dQ^2=-L(y,Q^2)-U(y),
397\label{RQ2HH}
398\end{equation}
399where
400\begin{equation}
401D(y)=1-y+\frac{y^2}{2},
402\label{RQ2D}
403\end{equation}
404\begin{equation}
405L(y,Q^2)=ln\left( F(y)+(e^{P(y)}-1+\frac{Q^2}{Q^2_{min}})^{-1} \right),
406\label{RQ2L}
407\end{equation}
408and
409\begin{equation}
410U(y)=P(y)\cdot\left( 1-\frac{Q^2_{min}}{Q^2_{max}}\right),
411\label{RQ2U}
412\end{equation}
413with
414\begin{equation}
415F(y)=\frac{(2-y)(2-2y)}{y^2}\cdot\frac{Q^2_{min}}{Q^2_{max}}
416\label{RQ2F}
417\end{equation}
418and
419\begin{equation}
420P(y)=\frac{1-y}{D(y)}.
421\label{RQ2P}
422\end{equation}
423The $Q^2$ value can then be calculated as
424\begin{equation}
425\frac{Q^2}{Q^2_{min}}=1-e^{P(y)}+\left(e^{R\cdot
426L(y,Q^2_{max})-(1-R)\cdot U(y)}-F(y) \right)^{-1},
427\label{Q2sol}
428\end{equation}
429where $R$ is a random number.  In Fig.~\ref{Q2dep}, Eq.(\ref{diff}) (solid
430curve) is compared to Eq.(\ref{RQ2HH}) (dashed curve).  Because the two
431curves are almost indistinguishable in the figure, this can be used as an
432illustration of the $Q^2$ spectrum of virtual photons, which is the derivative
433of these curves.  An alternative approach is to use Eq.(\ref{diff}) for the
434randomization with a three dimensional table $\frac{ydn}{dy}(Q^2,y,E_e)$.
435\begin{figure}[tbp]
436\resizebox{0.95\textwidth}{!}
437{
438   \includegraphics{hadronic/theory_driven/ChiralInvariantPhaseSpace/Fig13.eps}
439}
440\caption{Integrals of $Q^2$ spectra of virtual photons for three
441energies $10~MeV$, $100~MeV$, and $1~GeV$ at $y=0.001$, $y=0.5$, and $y=0.95$.
442The solid line corresponds to Eq.(\protect\ref{diff}) and the dashed
443line (which almost everywhere coincides with the solid line)
444corresponds to Eq.(\protect\ref{diff}).}
445\label{Q2dep}
446\end{figure}
447
448\noindent 
449After the $\nu$ and $Q^2$ values have been found, the value of
450$\sigma_{\gamma^*A}(\nu,Q^2)$ is calculated using Eq.(\ref{abc}).
451If $R\cdot\sigma_{\gamma A}(\nu)>\sigma_{\gamma^*A}(\nu,Q^2)$, no
452interaction occurs and the electron keeps going. This ``do nothing''
453process has low probability and cannot shadow other processes.
454
455
456\section {Status of this document}
457           created by ?              \\
458 20.05.02  re-written by D.H. Wright \\
459 01.12.02  expanded section on electronuclear cross sections - H.P. Wellisch \\
460
461
462\begin{latexonly}
463
464\begin{thebibliography}{99}
465
466\bibitem{Fermi} E. Fermi, Z. Physik {\textbf{29}}, 315 (1924).
467
468\bibitem{WeiWi} K. F. von Weizsacker, Z. Physik {\textbf{88}}, 612 (1934),
469E. J. Williams, Phys. Rev. {\textbf{45}}, 729 (1934).
470
471\bibitem{LanLif} L. D. Landau and E. M. Lifshitz,
472Soc. Phys. {\textbf{6}}, 244 (1934).
473
474\bibitem{Pomer} I. Ya. Pomeranchuk and I. M. Shmushkevich,
475Nucl. Phys. {\textbf{23}}, 1295 (1961).
476
477\bibitem{Grib} V. N. Gribov {\textit {et~al.}}, ZhETF {\textbf{41}}, 1834 (1961).
478
479\bibitem{encs.eqPhotons}  L. D. Landau, E. M. Lifshitz, ``Course of
480Theoretical Physics'' v.4, part 1, ``Relativistic Quantum Theory'',
481Pergamon Press, p. 351, The method of equivalent photons.
482
483\bibitem{Budnev} V. M. Budnev {\textit {et~al.}}, Phys. Rep. {\textbf{15}}, 181
484(1975).
485
486\bibitem{Brasse} F. W. Brasse {\textit {et~al.}}, Nucl. Phys. B {\textbf{110}}, 413
487(1976).
488
489\end{thebibliography}
490
491\end{latexonly}
492
493\begin{htmlonly}
494
495\section{Bibliography}
496
497\begin{enumerate}
498\item E. Fermi, Z. Physik {\textbf{29}}, 315 (1924).
499
500\item K. F. von Weizsacker, Z. Physik {\textbf{88}}, 612 (1934),
501E. J. Williams, Phys. Rev. {\textbf{45}}, 729 (1934).
502
503\item L. D. Landau and E. M. Lifshitz,
504Soc. Phys. {\textbf{6}}, 244 (1934).
505
506\item I. Ya. Pomeranchuk and I. M. Shmushkevich,
507Nucl. Phys. {\textbf{23}}, 1295 (1961).
508
509\item V.N. Gribov {\textit {et~al.}}, ZhETF {\textbf{41}}, 1834 (1961).
510
511\item L.D. Landau, E. M. Lifshitz, ``Course of
512Theoretical Physics'' v.4, part 1, ``Relativistic Quantum Theory'',
513Pergamon Press, p. 351, The method of equivalent photons.
514
515\item V.M. Budnev {\textit {et~al.}}, Phys. Rep. {\textbf{15}}, 181
516(1975).
517
518\item F.W. Brasse {\textit {et~al.}}, Nucl. Phys. B {\textbf{110}}, 413
519(1976).
520
521\end{enumerate}
522
523\end{htmlonly}
524
525
526
527
Note: See TracBrowser for help on using the repository browser.