source: trunk/documents/UserDoc/UsersGuides/PhysicsReferenceManual/latex/hadronic/theory_driven/EMDissociation.tex @ 1211

Last change on this file since 1211 was 1208, checked in by garnier, 15 years ago

CVS update

File size: 9.1 KB
Line 
1
2\chapter{Electromagnetic Dissociation Model}
3
4\section{The Model}
5The relative motion of a projectile nucleus travelling at relativistic
6speeds with respect to another nucleus can give rise to an increasingly
7hard spectrum of virtual photons.  The excitation energy associated
8with this energy exchange can result in the liberation of nucleons or
9heavier nuclei ({\normalsize\it{}i.e.} deuterons, $\alpha$-particles,
10{\normalsize\it{}etc.}).  The contribution of this source to the total
11inelastic cross section can be important, especially where the proton
12number of the nucleus is large.  The electromagnetic dissociation (ED)
13model is implemented in the classes G4EMDissociation,
14G4EMDissociationCrossSection and G4EMDissociationSpectrum, with the
15theory taken from Wilson {\normalsize\it{}et al} \cite{ed.Wilson}, and
16Bertulani and Baur \cite{ed.BandB}.
17
18\noindent The number of virtual photons \(N(E_{\gamma},b)\) per unit
19area and energy interval experienced by the projectile due to the
20dipole field of the target is given by the expression \cite{ed.BandB}:
21
22\begin{equation}
23N\left( {E_\gamma  ,b} \right) = \frac{{\alpha Z_T^2 }}{{\pi ^2 \beta ^2 b^2 E_\gamma  }}\left\{ {x^2 k_1^2 (x) + \left( {\frac{{x^2 }}{{\gamma ^2 }}} \right)k_0^2 (x)} \right\}
24\label{ed.eqn1}
25\end{equation}
26
27\noindent where \(x\) is a dimensionless quantity defined as:
28
29\begin{equation}
30x = \frac{{bE_\gamma  }}{{\gamma \beta \bar hc}}
31\label{ed.eqn2}
32\end{equation}
33
34\noindent and:
35
36\(\alpha\) \indent = fine structure constant
37
38\(\beta\) \indent = ratio of the velocity of the projectile in the
39laboratory frame to the velocity of light
40
41\(\gamma\) \indent = Lorentz factor for the projectile in the laboratory
42frame
43
44\(b\) \indent = impact parameter
45
46\(c\) \indent = speed of light
47
48\(\bar h\) \indent = quantum constant
49
50\(E_{\gamma}\) \indent = energy of virtual photon
51
52\(k_0\) and \(k_1\) \indent = zeroth and first order modified Bessel
53functions of the second kind
54
55\(Z_T\) \indent = atomic number of the target nucleus
56
57
58\noindent Integrating Eq. \ref{ed.eqn1} over the impact parameter from
59\(b_{min}\) to \(\infty \) produces the virtual photon spectrum for the
60dipole field of:
61
62\begin{equation}
63N_{E1} \left( {E_\gamma  } \right) = \frac{{2\alpha Z_T^2 }}{{\pi \beta ^2 E_\gamma  }}\left\{ {\xi k_0 (\xi )k_1 (\xi ) - \frac{{\xi ^2 \beta ^2 }}{2}\left( {k_1^2 (\xi ) - k_0^2 (\xi )} \right)} \right\}
64\label{ed.eqn3}
65\end{equation}
66
67\noindent where, according to the algorithm implemented by Wilson
68{\normalsize\it{}et al} in NUCFRG2 \cite{ed.Wilson}:
69
70\begin{equation}
71\begin{array}{c}
72\xi  = \frac{{E_\gamma  b_{\min } }}{{\gamma \beta \bar hc}} \\
73\\
74b_{\min }  = (1 + x_d )b_c  + \frac{{\pi \alpha _0 }}{{2\gamma }} \\
75\\
76\alpha _0  = \frac{{Z_P Z_T e^2 }}{{\mu \beta ^2 c^2 }} \\
77\\
78b_c  = 1.34\left[ {A_P^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/
79 {\vphantom {1 3}}\right.\kern-\nulldelimiterspace}
80\!\lower0.7ex\hbox{$3$}}}  + A_T^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/
81 {\vphantom {1 3}}\right.\kern-\nulldelimiterspace}
82\!\lower0.7ex\hbox{$3$}}}  - 0.75\left( {A_P^{ - {\raise0.7ex\hbox{$1$} \!\mathord{\left/
83 {\vphantom {1 3}}\right.\kern-\nulldelimiterspace}
84\!\lower0.7ex\hbox{$3$}}}  + A_T^{ - {\raise0.7ex\hbox{$1$} \!\mathord{\left/
85 {\vphantom {1 3}}\right.\kern-\nulldelimiterspace}
86\!\lower0.7ex\hbox{$3$}}} } \right)} \right] \\
87 \end{array}
88\label{ed.eqn4}
89\end{equation}
90
91\noindent and \(\mu\) is the reduced mass of the projectile/target system,
92\(x_d=0.25\), and \(A_P\) and \(A_T\) are the projectile and target nucleon
93numbers.  For the last equation, the units of \(b_c\) are fm.  Wilson
94{\normalsize\it{}et al} state that there is an equivalent virtual photon
95spectrum as a result of the quadrupole field:
96
97\begin{equation}
98N_{E2} \left( {E_\gamma  } \right) = \frac{{2\alpha Z_T^2 }}{{\pi \beta ^4 E_\gamma  }}\left\{ {2\left( {1 - \beta ^2 } \right)k_1^2 (\xi ) + \xi \left( {2 - \beta ^2 } \right)^2 k_0 (\xi )k_1 (\xi ) - \frac{{\xi ^2 \beta ^4 }}{2}\left( {k_1^2 (\xi ) - k_0^2 (\xi )} \right)} \right\}
99\label{ed.eqn5}
100\end{equation}
101
102\noindent The cross section for the interaction of the dipole and quadrupole
103fields is given by:
104
105\begin{equation}
106\sigma _{ED}  = \int {N_{E1} \left( {E_\gamma  } \right)\sigma _{E1} \left( {E_\gamma  } \right)dE_\gamma  }  + \int {N_{E2} \left( {E_\gamma  } \right)\sigma _{E2} \left( {E_\gamma  } \right)dE_\gamma  } 
107\label{ed.eqn6}
108\end{equation}
109
110\noindent Wilson {\normalsize\it{}et al} assume that
111\(\sigma_{E1}(E_{\gamma})\) and \(\sigma_{E2}(E_{\gamma})\) are sharply peaked
112at the giant dipole and quadrupole resonance energies:
113
114\begin{equation}
115\begin{array}{c}
116E_{GDR}  = \bar hc \left[ {\frac{{m^* c^2 R_0^2 }}{{8J}}\left( {1 + u - \frac{{1 + \varepsilon  + 3u}}{{1 + \varepsilon  + u}}\varepsilon } \right)} \right]^{- \frac {1} {2}} \\
117\\
118E_{GQR}  = \frac{{63}}{{A_P^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/
119 {\vphantom {1 3}}\right.\kern-\nulldelimiterspace}
120\!\lower0.7ex\hbox{$3$}}} }} \\
121\label{ed.eqn7}
122 \end{array}
123\end{equation}
124
125\noindent so that the terms for \(N_{E1}\) and \(N_{E2}\) can be taken
126out of the integrals in Eq. \ref{ed.eqn6} and evaluated at the resonances.
127
128\noindent In Eq. \ref{ed.eqn7}:
129
130\begin{equation}
131\begin{array}{c}
132u = \frac{{3J}}{{Q'}}A_P^{ - {\raise0.7ex\hbox{$1$} \!\mathord{\left/
133 {\vphantom {1 3}}\right.\kern-\nulldelimiterspace}
134\!\lower0.7ex\hbox{$3$}}} \\
135\\
136R_0  = r_0 A_P^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/
137 {\vphantom {1 3}}\right.\kern-\nulldelimiterspace}
138\!\lower0.7ex\hbox{$3$}}} \\
139 \end{array}
140\label{ed.eqn8}
141\end{equation}
142
143\noindent \(\epsilon=0.0768\), \(Q'=17\)MeV, \(J=36.8\)MeV, \(r_0=1.18\)fm,
144and \(m^*\) is 7/10 of the nucleon mass (taken as 938.95 MeV/c$^2$). 
145(The dipole and quadrupole energies are expressed in units of MeV.)
146
147\noindent The photonuclear cross sections for the dipole and quadrupole
148resonances are assumed to be given by:
149
150\begin{equation}
151\int {\sigma _{E1} \left( {E_\gamma  } \right)dE_\gamma   = 60\frac{{N_P Z_P }}{{A_P }}} 
152\label{ed.eqn9}
153\end{equation}
154
155\noindent in units of MeV-mb (\(N_P\) being the number of neutrons in the
156projectile) and:
157
158\begin{equation}
159\int {\sigma _{E2} \left( {E_\gamma  } \right)\frac{{dE_\gamma  }}{{E_\gamma ^2 }} = 0.22fZ_P A_P^{{\raise0.7ex\hbox{$2$} \!\mathord{\left/
160 {\vphantom {2 3}}\right.\kern-\nulldelimiterspace}
161\!\lower0.7ex\hbox{$3$}}} } 
162\label{ed.eqn10}
163\end{equation}
164\noindent in units of $\mu$b/MeV.  In the latter expression, \(f\) is
165given by:
166
167\begin{equation}
168f = \left\{ {\begin{array}{*{20}c}
169   {0.9} \hfill & {A_P  > 100} \hfill  \\
170   {0.6} \hfill & {40 < A_\le 100} \hfill  \\
171   {0.3} \hfill & {40 \le A_P } \hfill  \\
172\end{array}} \right.
173\end{equation}
174
175\noindent The total cross section for electromagnetic dissociation is
176therefore given by Eq. \ref{ed.eqn6} with the virtual photon spectra for
177the dipole and quadrupole fields calculated at the resonances:
178
179\begin{equation}
180\sigma _{ED}  = N_{E1} \left( {E_{GDR} } \right)\int {\sigma _{E1} \left( {E_\gamma  } \right)dE_\gamma  }  + N_{E2} \left( {E_{GQR} } \right)E_{GQR}^2 \int {\frac{{\sigma _{E2} \left( {E_\gamma  } \right)}}{{E_\gamma ^2 }}dE_\gamma  } 
181\label{ed.eqn11}
182\end{equation}
183
184\noindent where the resonance energies are given by Eq. \ref{ed.eqn7} and
185the integrals for the photonuclear cross sections given by
186Eq. \ref{ed.eqn9} and Eq. \ref{ed.eqn10}.
187
188\noindent The selection of proton or neutron emission is made according to
189the following prescription from Wilson {\normalsize\it{}et al}.
190
191\begin{equation}
192\begin{array}{l}
193 \sigma _{ED,p}  = \sigma _{ED}  \times \left\{ {\begin{array}{*{20}c}
194   {0.5} \hfill & {Z_P  < 6} \hfill  \\
195   {0.6} \hfill & {6 \le Z_\le 8} \hfill  \\
196   {0.7} \hfill & {8 < Z_P  < 14} \hfill  \\
197   {\min \left[ {\frac{{Z_P }}{{A_P }},1.95\exp ( - 0.075Z_P )} \right]} \hfill & {Z_\ge 14} \hfill  \\
198\end{array}} \right\} \\ 
199 \sigma _{ED,n}  = \sigma _{ED}  - \sigma _{ED,p}  \\ 
200 \end{array}
201\label{ed.eqn12}
202\end{equation}
203
204\indent Note that this implementation of ED interactions only treats
205the ejection of single nucleons from the nucleus, and currently does
206not allow emission of other light nuclear fragments.
207
208\section{Status of this document}
20919.06.04 created by Peter Truscott \\
210
211
212\begin{latexonly}
213
214\begin{thebibliography}{99}
215
216\bibitem{ed.Wilson}
217J. W. Wilson, R. K. Tripathi, F. A. Cucinotta, J. K. Shinn,
218F. F. Badavi, S. Y. Chun, J. W. Norbury, C. J. Zeitlin, L. Heilbronn,
219and J. Miller,
220"NUCFRG2: An evaluation of the semiempirical nuclear fragmentation database,"
221NASA Technical Paper 3533, 1995.
222
223\bibitem{ed.BandB}
224C. A. Bertulani, and G. Baur, “Electromagnetic processes in
225relativistic heavy ion collisions,”
226Nucl Phys, A458, 725-744, 1986.
227
228\end{thebibliography}
229
230\end{latexonly}
231
232
233\begin{htmlonly}
234
235\section{Bibliography}
236
237\begin{enumerate}
238\item
239J. W. Wilson, R. K. Tripathi, F. A. Cucinotta, J. K. Shinn,
240F. F. Badavi, S. Y. Chun, J. W. Norbury, C. J. Zeitlin, L. Heilbronn,
241and J. Miller,
242"NUCFRG2: An evaluation of the semiempirical nuclear fragmentation database,"
243NASA Technical Paper 3533, 1995.
244
245\item
246C. A. Bertulani, and G. Baur, “Electromagnetic processes in
247relativistic heavy ion collisions,”
248Nucl Phys, A458, 725-744, 1986.
249
250\end{enumerate}
251
252\end{htmlonly}
253
Note: See TracBrowser for help on using the repository browser.