source: trunk/documents/UserDoc/UsersGuides/PhysicsReferenceManual/latex/hadronic/theory_driven/Evaporation/ModelDescription.tex @ 1208

Last change on this file since 1208 was 1208, checked in by garnier, 15 years ago

CVS update

File size: 10.8 KB
Line 
1\section{Model description.}
2
3\hspace{1.0em} The Weisskopf treatment is an application of the
4detailed balance principle that relates the probabilities to go from
5a state $i$ to another $d$ and viceversa through the density of states
6in the two systems:
7%%
8\begin{equation}
9  \label{evap:1}
10  P_{i \rightarrow d} \rho(i) = P_{d \rightarrow i} \rho(d)
11\end{equation}
12%%
13where $P_{d \rightarrow i}$ is the probability per unit of time of a
14nucleus $d$ captures a particle $j$ and form a compound nucleus $i$
15which is proportional to the compound nucleus cross section
16$\sigma_{\mathrm{inv}}$. Thus, the probability that a parent nucleus
17$i$ with an excitation energy $E^*$ emits a particle $j$ in its ground
18state with kinetic energy $\varepsilon$ is
19%%
20\begin{equation}
21  \label{evap:2}
22  P_j(\varepsilon) \mathrm{d}\varepsilon = g_j
23  \sigma_{\mathrm{inv}}(\varepsilon) \frac{\rho_d(E_{\mathrm{max}} -
24  \varepsilon)}{\rho_i(E^*)} \varepsilon \mathrm{d}\varepsilon
25\end{equation}
26%%
27where $\rho_i(E^*)$ is the level density of the evaporating nucleus,
28$\rho_d(E_{\mathrm{max}} - \varepsilon)$ that of the daugther
29(residual) nucleus after emission of a fragment $j$ and
30$E_{\mathrm{max}}$ is the maximum energy that can be carried by the
31ejectile. With the spin $s_j$ and the mass $m_j$ of the emitted
32particle, $g_j$ is expressed as $g_j = ( 2 s_j + 1 ) m_j / \pi^2
33\hbar^2$.
34
35This formula must be implemented with a suitable form for the level
36density and inverse reaction cross section. We have followed, like
37many other implementations, the original work of Dostrovsky \textit{et al.}
38 \cite{evap.Dostrovsky59} (which represents the first Monte Carlo
39code for the evaporation process) with slight modifications. The
40advantage of the Dostrovsky model is that it leds to a simple
41expression for equation \ref{evap:2} that can be analytically
42integrated and used for Monte Carlo sampling.
43
44
45\subsection{Cross sections for inverse reactions.}
46
47\hspace{1.0em} The cross section for inverse reaction is expressed by
48means of empirical equation \cite{evap.Dostrovsky59}
49%%
50\begin{equation}
51  \label{evap:3}
52  \sigma_{\mathrm{inv}}(\varepsilon) = \sigma_g \alpha \left( 1 +
53  \frac{\beta}{\varepsilon} \right
54\end{equation}
55%%
56where $\sigma_g = \pi R^2$ is the geometric cross section.
57
58In the case of neutrons, $\alpha = 0.76+2.2A^{-\frac{1}{3}}$ and
59$\beta = (2.12 A^{-\frac{2}{3}} - 0.050)/\alpha$ MeV. This equation
60gives a good agreement to those calculated from continuum theory
61\cite{evap.Blatt52} for intermediate nuclei down to $\varepsilon \sim 0.05$
62MeV. For lower energies $\sigma_{\mathrm{inv},n}(\varepsilon)$ tends
63toward infinity, but this causes no difficulty because only the
64product $\sigma_{\mathrm{inv},n}(\varepsilon)\varepsilon$ enters in
65equation \ref{evap:2}. It should be noted, that the inverse cross
66section needed in  \ref{evap:2} is that between a neutron of kinetic
67energy $\varepsilon$ and a nucleus in an excited state.
68
69For charged particles (p, d, t, $^3$He and $\alpha$), $\alpha =
70(1+c_j)$ and $\beta = -V_j$, where $c_j$ is a set of parameters
71calculated by Shapiro \cite{evap.Shapiro53} in order to provide a good fit
72to the continuum theory \cite{evap.Blatt52} cross sections and $V_j$ is the
73Coulomb barrier.
74
75\subsection{Coulomb barriers.}
76
77\hspace{1.0em} Coulomb repulsion, as calculated from elementary
78electrostatics are not directly applicable to the computation of
79reaction barriers but must be corrected in several ways. The first
80correction is for the quantum mechanical phenomenoon of barrier
81penetration. The proper quantum mechanical expressions for barrier
82penetration are far too complex to be used if one wishes to retain
83equation \ref{evap:2} in an integrable form. This can be approximately
84taken into account by multiplying the electrostatic Coulomb barrier by
85a coefficient $k_j$ designed to reproduce the barrier penetration
86approximately whose values are tabulated \cite{evap.Shapiro53}.
87%%
88\begin{equation}
89  \label{evap:4}
90  V_j = k_j \frac{Z_j Z_d e^2}{R_c}
91\end{equation}
92%%
93The second correction is for the separation of the centers of the
94nuclei at contact, $R_c$. We have computed this separation as $R_c =
95R_j + R_d$ where $R_{j,d} = r_c A_{j,d}^{1/3}$ and $r_c$ is
96given \cite{evap.Iljinov94} by
97%%
98\begin{equation}
99  \label{evap:5}
100  r_c = 2.173 \frac{1 + 0.006103 Z_j Z_d}{1 + 0.009443 Z_j Z_d}
101\end{equation}
102%%
103 
104
105\subsection{Level densities.}
106
107\hspace{1.0em} The simplest and most widely used level density based
108on the Fermi gas model  are those of Weisskopf \cite{evap.Weisskopf37} for
109a completely degenerate Fermi gas. We use this approach with the
110corrections for nucleon pairing proposed by Hurwitz and Bethe
111\cite{evap.Hurwitz51} which takes into account the displacements of the
112ground state:
113%%
114\begin{equation}
115  \label{evap:6}
116  \rho(E) = C \exp{\left( 2 \sqrt{a(E-\delta)} \right)}
117\end{equation}
118%%
119where $C$ is considered as constant and does not need to be specified
120since only ratios of level densities enter in equation \ref{evap:2}.
121$\delta$ is the pairing energy correction of the daughter nucleus
122evaluated by Cook \textit{et al.} \cite{evap.Cook67} and Gilbert and
123Cameron \cite{evap.Gilbert65} for those values not evaluated by Cook
124\textit{et al.}. The level density parameter is calculated according
125to:
126%%
127\begin{equation}
128  \label{evap:7}
129  a(E,A,Z) = \tilde{a}(A) \left \{ 1 + \frac{\delta}{E} [1 - \exp(-\gamma
130  E)] \right\}
131\end{equation}
132%%
133and the parameters calculated by Iljinov \textit{et al.}
134\cite{evap.Iljinov92} and shell corrections of Truran, Cameron and Hilf
135\cite{evap.Truran70}.
136
137\subsection{Maximum energy available for evaporation.}
138
139\hspace{1.0em} The maximum energy avilable for the evaporation process
140(\textit{i.e.} the maximum kinetic energy of the outgoing fragment) is
141usually computed like $E^* - \delta - Q_j$ where is the separation
142energy of the fragment $j$: $Q_j = M_i - M_d - M_j$ and $M_i$, $M_d$
143and $M_j$ are the nclear masses of the compound, residual and
144evporated nuclei respectively. However, that expression does not
145consider the recoil energy of the residual nucleus. In order to take
146into account the recoil energy we use the expression
147%%
148\begin{equation}
149  \label{evap:8}
150  \varepsilon_j^{\mathrm{max}} = \frac{(M_i + E^* - \delta)^2 + M_j^2
151  - M_d^2}{2 (M_i + E^* - \delta)} - M_j
152\end{equation}
153
154\subsection{Total decay width.}
155
156\hspace{1.0em} The total decay width for evaporation of a fragment $j$
157can be obtained by integrating equation \ref{evap:2} over kinetic
158energy
159%%
160\begin{equation}
161  \label{evap:9}
162  \Gamma_j = \hbar \int_{V_j}^{\varepsilon_j^{\mathrm{max}}}
163  P(\varepsilon_j) \mathrm{d}\varepsilon_j
164\end{equation}
165%%
166This integration can be performed analiticaly if we use equation
167\ref{evap:6} for level densities and equation \ref{evap:3} for inverse
168reaction cross section. Thus, the total width is given by
169%%
170\begin{eqnarray}
171\label{eq:10}
172  \Gamma_j  = \frac{g_j m_j R_d^2}{2 \pi \hbar^2} \frac{\alpha}{a_d^2}
173    & \times &
174    \Biggl \lgroup \biggl \{ \left(\beta a_d - \frac{3}{2}\right) + a_d
175    (\varepsilon_j^{\mathrm{max}} - V_j) \biggr \}
176    \exp{\left\{-\sqrt{a_i(E^*-\delta_i)}\right\}} + \nonumber \\
177    & & \biggl \{ (2\beta a_d - 3) \sqrt{a_d
178       (\varepsilon_j^{\mathrm{max}} - V_j)} + 2 a_d
179    (\varepsilon_j^{\mathrm{max}} - V_j) \biggr \} \times \nonumber \\
180    & & \exp{
181       \left\{
182       2 \left[
183         \sqrt{a_d(\varepsilon_j^{\mathrm{max}} - V_j)}
184         - 
185         \sqrt{a_i(E^* - \delta_i)}
186       \right]
187       \right\}
188       }
189     \Biggr \rgroup
190\end{eqnarray}
191%%
192where $a_d = a(A_d,Z_d,\varepsilon_j^{\mathrm{max}})$ and $a_i =
193a(A_i,Z_i,E^*)$.
194
195\section{GEM Model}
196
197\hspace{1.0em} As an alternative model we have implemented the
198generalized evaporation model (GEM) by Furihata
199\cite{evap.Furihata00}. This model considers emission of fragments heavier
200than $\alpha$ particles and uses a more accurate level density
201function for total decay width instead of the approximation used by
202Dostrovsky. We use the same set of parameters but for heavy ejectiles
203the parameters determined by Matsuse \textit{et al.} \cite{evap.Matsuse82}
204are used.
205
206Based on the Fermi gas model, the level density function is expressed
207as
208%%
209\begin{equation}
210\label{evap:11}
211  \rho(E) =
212    \left\{ \begin{array}{ll}
213      \frac{\sqrt{\pi}}{12} 
214      \frac{e^{2\sqrt{a(E-\delta)}}}{a^{1/4}(E-\delta)^{5/4}} & 
215      \rm{for} \quad E \geq E_x \\
216      \frac{1}{T} e^{(E-E_0)/T} & \rm{for} \quad E < E_x
217    \end{array} \right.
218\end{equation}
219%%
220where $E_x = U_x + \delta$ and $U_x = 150/M_d + 2.5$ ($M_d$ is the
221mass of the daughter nucleus). Nuclear temperature $T$ is given as
222$1/T = \sqrt{a/U_x} - 1.5U_x$, and $E_0$ is defined as $E_0 = E_x -
223T(\log{T} - \log{a}/4 - (5/4)\log{U_x} + 2 \sqrt{aU_x})$.
224
225By substituting equation \ref{evap:11} into equation \ref{evap:2} and
226integrating over kinetic energy can be obtained the following
227expression
228%%
229\begin{equation}
230\label{evap:12}
231  \Gamma_j = \frac{ \sqrt{\pi} g_j \pi R_d^2 \alpha}{12 \rho(E^*)} \times
232  \left\{ \begin{array}{ll}
233    \{I_1(t,t) + (\beta+V)I_0(t)\} &
234    \rm{for} \quad \varepsilon_j^{\mathrm{max}} - V_j < E_x \\
235    \{I_1(t,t_x)+I_3(s,s_x)e^s+ & \\
236    (\beta+V)(I_0(t_x)+I_2(s,s_x)e^s)\} &
237    \rm{for} \quad \varepsilon_j^{\mathrm{max}} - V_j \geq E_x .
238  \end{array} \right.
239\end{equation}
240%%
241$I_0(t)$, $I_1(t,t_x)$, $I_2(s,s_x)$, and $I_3(s,s_x)$ are expressed
242as:
243\begin{eqnarray}
244  I_0(t)     & = & e^{-E_0/T} (e^t -1) \\
245  I_1(t,t_x) & = & e^{-E_0/T} T \{(t - t_x + 1)e^{t_x} - t -1 \} \\ 
246  I_2(s,s_x) & = & 2\sqrt{2} \biggl \{ s^{-3/2} + 1.5  s^{-5/2} + 3.75
247  s^{-7/2} - \nonumber \\ 
248             &   & (s_x^{-3/2} + 1.5 s_x^{-5/2} + 3.75 s_x^{-7/2}) \biggr \} \\
249  I_3(s,s_x) & = & \frac{1}{2\sqrt{2}} \Biggl [ 2 s^{-1/2} + 4
250                  s^{-3/2} + 13.5  s^{-5/2} + 60.0  s^{-7/2} + \nonumber \\ 
251             &   & 325.125 s^{-9/2} -
252  \biggl \{ 
253  (s^2 - s_x^2) s_x^{-3/2} +
254  (1.5s^2 + 0.5s_x^2) s_x^{-5/2} + \nonumber \\
255  & & 
256  (3.75s^2 + 0.25s_x^2) s_x^{-7/2} +
257  (12.875s^2 + 0.625s_x^2) s_x^{-9/2} + \nonumber \\ 
258  & & 
259  (59.0625s^2 + 0.9375s_x^2) s_x^{-11/2} + \nonumber \\
260  & &
261  (324.8s^2 + 3.28s_x^2) s_x^{-13/2} +
262  \biggr \}
263\Biggr ]
264\end{eqnarray}
265%%
266where $t = (\varepsilon_j^{\mathrm{max}}-V_j)/T$, $t_x = E_x/T$, $s = 2
267\sqrt{a(\varepsilon_j^{\mathrm{max}}-V_j -\delta_j)}$ and $s_x = 2
268\sqrt{a(E_x - \delta)}$.
269
270Besides light fragments, 60 nuclides up to $^{28}$Mg are considered,
271not only in their ground states but also in their exited states, are
272considered. The excited state is assumed to survive if its lifetime
273$T_{1/2}$ is longer than the decay time, \textit{i. e.},
274$T_{1/2}/\ln{2} > \hbar/\Gamma_j^*$, where $\Gamma_j^*$ is the
275emission width of the resonance calculated in the same manner as for
276ground state particle emission. The total emission width of an
277ejectile $j$ is summed over its ground state and all its excited
278states which satisfy the above condition.
279
280%%% Local Variables:
281%%% mode: latex
282%%% TeX-master: "EvaporationModel"
283%%% End:
Note: See TracBrowser for help on using the repository browser.