source: trunk/documents/UserDoc/UsersGuides/PhysicsReferenceManual/latex/hadronic/theory_driven/Evaporation/SimulationFragmentEvaporation.tex @ 1211

Last change on this file since 1211 was 1208, checked in by garnier, 15 years ago

CVS update

File size: 6.7 KB
Line 
1\section{Simulation of fragment evaporation.}
2
3\hspace{1.0em} The evaporation of
4 neutron, proton, deutron, thritium and alpha fragments
5 are taken into account.
6
7\subsection{Evaporation threshold.} 
8
9\hspace{1.0em}One should take into account the energy condition
10for fragment emission, i. e. the nucleus
11excitation energy should be higher than
12the reaction threshold:
13\begin{equation}
14\label{SFE1}T_b^{\max }=E^{*}-Q_b-V_b > 0.
15\end{equation}
16Here $T_b^{\max }$ is the maximal kinetic energy carried by emitted
17fragment $b$, $Q_b = M(A,Z)-M(A_f,Z_f)-M_b$ is the fragment $b$ binding
18energy. $V_b$ is the Coulomb
19potential energy, i. e. the Coulomb barrier for fragment $b$.
20 $M(A,Z)$ is the mass of the initial nucleus, $M(A_f,Z_f)$ is
21the mass of the nucleus after emission of fragment $b$ and $M_b$ is the
22fragment $b$ mass. It should be noted that expression ($\ref{SFE1}$) is
23only valid, when the recoil kinetic energy equals zero. In our code we
24apply the condition:
25\begin{equation}
26\label{SFE2}T_b^{\max }=E_b^{\max}-M_b-V_b > 0,
27\end{equation} 
28where
29\begin{equation}
30\label{SFE3}E_b^{\max }=\frac{(M(A,Z)+E^{*})^2+M^2_b-M^2(A_f,Z_f)}
31{2(M(A,Z)+E^{*})}.
32\end{equation}
33
34\subsection{Coulomb barrier calculation.} 
35
36\hspace{1.0em}The  Coulomb barrier:
37\begin{equation}
38  V_b = C_b\frac{Z_bZ_f}{R_f+R_b},
39\end{equation}
40where $C_b = 1.44$ \ MeVfm, $Z_b$ and $R_b$ are charge and
41 radius of nucleus after fragment
42emission, $Z_f$ and $R_f$ are charge and radius of fragment.
43The radii of nuclei are
44approximated by $R = r_{C}A^{1/3}$,
45 where \cite{IKP94}
46\begin{equation}
47\label{SFE8}r_{C} = 2.173\frac{1+0.006103Z_bZ_f}{1+0.009443Z_bZ_f} \ fm.
48\end{equation}
49
50\subsection{The fragment evaporation probability.} 
51
52\hspace{1.0em}Evaporation process has been  predicted by the statistical
53Weisskopf-Ewing model \cite{WE40.evap}.  Probability to evaporate particle
54$b$ in the energy interval $(T_b, T_b+dT_b)$ per unit of time is given
55\begin{equation}
56\label{SFE9}W_{b}(T_b) = \sigma_{b}(T_b)\frac{(2s_b+1)m_b}{\pi^2 h^3}
57\frac{\rho(E^{*} - Q_b-T_b)}{\rho(E^{*})}T_b,
58\end{equation}
59where $\sigma_{b}(T_b)$ is the inverse (absorption of particle $b$)
60reaction cross section, $s_b$ and $m_b$ are particle spin and mass,
61  $\rho$ is level densities of  nucleus. 
62
63\subsection{The inverse reaction cross section.}
64
65\hspace{1.0em}To calculate inverse   reaction cross section it is
66assumed to have the form \cite{Dostr59}
67\begin{equation}
68\label{SFE11} 
69\sigma _b(T_b ) = (1+C_b)(1-k_bV_b/T_b )\pi R^2
70\end{equation}
71for charged charged fragments with $A_f \leq 4$ interaction, where the
72$k_b$ is the barrier penetration coefficient ( its tabulated values are
73used), and
74\begin{equation}
75\label{SFE12} 
76\sigma _b(T_b ) = \alpha (1 + \beta /T_b )\pi R^2
77\end{equation}
78for neutrons. Here $R = r_{0} A^{1/3}$ denotes the absorption radius, where
79$r_0 = 1.5$ \ fm,
80$\alpha =0.76 + 2.2 A^{-1/3}$ and $\beta=(2.12 A^{-2/3} - 0.05)/(0.76 +
812.2 A^{-1/3})$.
82
83\subsection{The level density.}
84
85\hspace{1.0em}The level
86density is approximated by Fermi-gas approach \cite{IKP94} for the nuclear
87level density:
88\begin{equation}
89\label{SFE13} \rho(E^{*}) = C\exp{(2\sqrt{aE^{*}})},
90\end{equation}
91where $C$ is a constant, which does not depend from nucleus properties
92and excitation energy $E^{*}$ and $a$ is the level density parameter.
93
94\subsection{The total evaporation probability.} 
95
96\hspace{1.0em}The total probability $W_b$ or total partial width
97$\Gamma_b=\hbar W_b$ to evaporate particle $b$ can be obtained from
98Eq. ($\ref{SFE9}$) by integration over $T_b$:
99\begin{equation}
100\label{SFE17} 
101W_{b}=\int_{V_b}^{E^{*}-Q_b} W_b(T_b)dT_b.
102\end{equation}
103Here the summation is carried out over all excited states of the
104fragment.
105 
106Integration in Eq. ($\ref{SFE17}$) for probability to emit fragment $b$
107can be performed analiticaly, if we will use Eq. ($\ref{SFE11}$) for level
108density and the Eqs. ($\ref{SFE11}$)-($\ref{SFE12}$) for inverse cross
109section.
110The probability
111to emit a charged particle:
112\begin{equation}
113\label{SFE18} 
114\begin{array}{c}
115W_{b}=\gamma _bA_b^{2/3}B\exp [-2
116\sqrt{aE^{*}}]\frac{(1+C_b)}{a_b^2}\{a_bT_b^{\max }[2\exp (2\sqrt{%
117a_bT_b^{\max }})+1]- \\
118- 3\sqrt{a_bT_b^{\max }}\exp (2\sqrt{a_bT_b^{\max }}%
119)-3[1-\exp (2\sqrt{a_bT_b^{\max }})]/2\},
120\end{array}
121\end{equation}
122where $T_b^{max}$ is defined by the equation ($\ref{SFE1}$).
123The following notations were introduced: $A_b=A-\Delta A_b$, $%
124B=m_Nr_0^2/(2\pi h^2)$, $\gamma _b=(2s_b+1)m_b/m_N$. $\Delta A_b$ is the
125number of nucleons in $b$ particle. $m_b$, $m_N$ and $s_b$ are mass of
126particle $b$, mass of nucleon and spin of particle $b$ respectively.
127  The $a_b$ is level density parameter for
128nucleus after emission of fragment $b$.
129Similarly for the neutron evaporation probability we obtain the
130following equation:
131\begin{equation}
132\begin{array}{c}
133\label{SFE19}W_{n}
134=\gamma _nA_n^{2/3}B\frac \alpha {2a_n^2} \\
135\exp [-2\sqrt{aE^{*}}+2\sqrt{a_nT_n^{\max }}]
136[4a_nT_n^{\max }+(2a_n\beta -3)(2\exp (2\sqrt{a_nT_n^{\max }}-1)].
137\end{array} 
138\end{equation}
139Using probabilities Eq. ($\ref{SFE18}$) and Eq. ($\ref{SFE19}$) we are
140able to
141choose randomly the type of emitted fragment.
142
143\subsection{Kinetic energy of emitted fragment.}
144
145\hspace{1.0em}The equation ($\ref{SFE9}$) can be used to sample kinetic
146energies of evaporated fragments.
147 For example, keeping terms in Eq. ($\ref{SFE9}$),
148which depend from $T_b$ and using the approximations for inverse cross
149section is given by Eq. ($\ref{SFE11}$) and for level densities are given
150by Eq. ($\ref{SFE13}$), we obtain for charged fragments
151\begin{equation}
152\label{SFE20}W(x)=C_1 x\exp (2\sqrt{a(T_b^{\max }-x)}= C_2
153T_b\exp (2\sqrt{aE^{*}}),
154\end{equation}
155where $C_1$ and $C_2$ do not depend from $T_b$, $x=T_b-V_b$. To generate
156values of $x$ we can use the next procedure, changing the expression for
157$W(x)$ to have $W(x^{\max })=1$ ($x^{\max }=[(a_b+T_b^{\max
158}+1/4)^{1/2}-1/2]/a_b$). Choose two random numbers $\xi _1$ and $\xi _2$
159(distributed with equal probabilities between 0 and 1) and find kinetic
160energy of particle $b$ as $T_b=T_b^{\max }\xi _1+V_b$ at condition $\xi
161_2\leq W(\xi _1T_b^{\max })$. If this condition is not fulfilled we
162should choose another pair of random numbers.
163
164
165\subsection{Angular distribution of evaporated fragments.}
166
167\hspace{1.0em}We consider the angular distribution for emitted
168fragments as
169isotropical since we have no information about spin and polarization of
170nuclei.
171
172
173\subsection{Parameters of residual nucleus.}
174
175\hspace{1.0em}After fragment emission we  update parameter
176of decaying nucleus:
177\begin{equation}
178\label{SFE21} 
179\begin{array}{c}
180A_f=A-A_b; Z_f=Z-Z_b; P_f = P_0 - p_b; \\ 
181E_f^{*}=\sqrt{E_f^2-\vec{P}^2_f} - M(A_f,Z_f).
182\end{array}
183\end{equation}
184Here $p_b$ is the evaporated fragment four momentum.
Note: See TracBrowser for help on using the repository browser.