source: trunk/documents/UserDoc/UsersGuides/PhysicsReferenceManual/latex/hadronic/theory_driven/Fission/LLNLFission.tex @ 1208

Last change on this file since 1208 was 1208, checked in by garnier, 15 years ago

CVS update

File size: 26.5 KB
Line 
1
2\section{Fission with improved multiplicity sampling}
3
4As an alternative to the fission model described in the previous
5section there is a modified model that produces more accurate
6multiplicity distributions for the emitted neutrons and gamma rays
7from spontaneous and neutron-induced fission. This was motivated by
8detailed statistical studies of fission chains in multiplying
9media. This model is data-driven and incorporates all available
10multiplicity measurements found in the literature. Empirical models
11are employed whenever multiplicity data are not available.
12Essentially no data are available for the correlations between the
13neutrons and gammas, so this model samples these distributions
14independently. By default, this model effectively scales the
15multiplicity data to match the average multiplicity value
16($\bar{\nu}$) found in the GEANT4 evaluated data library. Therefore,
17only isotopes that have a measured $\bar{\nu}$ in the data library
18will emit fission gammas or neutrons. At present the gammas and
19neutrons are emitted isotropically. The data and empirical models are
20described in detail in the following subsections.
21
22%\section{Neutrons emitted by fission\label{neutrons}}
23
24\subsection{Neutron number distribution}
25
26Based on reasonable assumptions about the distribution of excitation
27energy among fission fragments, Terrell~\cite{Terrell 1957} showed
28that the probability P$_\nu$ of observing $\nu$ neutrons from fission
29can be approximated by a Gaussian-like distribution
30\begin{equation}
31\sum_{n=0}^{\nu}P_n = \frac{1}{2\pi}\int_{-\infty}^{\frac{\nu-\bar{\nu} 
32                    + \frac{1}{2}+b}{\sigma}}e^{-\frac{t^2}{2}dt}
33\end{equation}
34where $\bar{\nu}$ is the average number of neutrons, $\sigma$ (set to
351.079) is the width of the distribution, and $b$ is a small correction
36factor ($b<0.01$) that ensures that the discrete probability
37distribution has the correct average $\bar{\nu}$. This model is used
38when no explicit multiplicity data are available.
39
40\subsubsection*{Neutron-induced fission data}
41
42Zucker and Holden~\cite{Zucker and Holden 1986} measured the neutron
43multiplicity distributions for $^{235}$U, $^{238}$U, and $^{239}$Pu
44(see Tables~\ref{Neutron number distribution for induced fission in 235U}
45-\ref{Neutron number distribution for induced fission in 239Pu (continued)}),
46as a function of the incident neutron energy $E_n$ from
47zero through ten MeV in increments of one MeV.  Fig.~\ref{235U induced
48fission 6MeV} shows the neutron number distribution for induced
49fission of $^{235}$U. Gwin, Spencer and Ingle~\cite{Gwin 1984}
50measured the distribution at thermal energies for $^{235}$U. In
51addition, there are many measurements of $\bar{\nu}$, the average
52number of emitted neutrons, for many isotopes. Since there are multiple
53methods for parameterizing the multiplicity data and
54renormalizing the overall distributions to agree with the specific measured
55values of $\bar{\nu}$, we provide four options for generating
56neutron multiplicity distributions.
57%% \notgeant{These options are selected by the internal variable {\tt nudist}, default=3.}
58
59\begin{table}[ht]
60\footnotesize
61\begin{center}
62\begin{tabular}{|c|ccccccc|} \hline
63$E_n$ & $\nu$=0 & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline
640 & .0317223 & .1717071 & .3361991 & .3039695 & .1269459 & .0266793 & .0026322 \\
651 & .0237898 & .1555525 & .3216515 & .3150433 & .1444732 & .0356013 & .0034339 \\
662 & .0183989 & .1384891 & .3062123 & .3217566 & .1628673 & .0455972 & .0055694 \\
673 & .0141460 & .1194839 & .2883075 & .3266568 & .1836014 & .0569113 & .0089426 \\
684 & .0115208 & .1032624 & .2716849 & .3283426 & .2021206 & .0674456 & .0128924 \\
695 & .0078498 & .0802010 & .2456595 & .3308175 & .2291646 & .0836912 & .0187016 \\
706 & .0046272 & .0563321 & .2132296 & .3290407 & .2599806 & .1045974 & .0265604 \\
717 & .0024659 & .0360957 & .1788634 & .3210507 & .2892537 & .1282576 & .0360887 \\
728 & .0012702 & .0216090 & .1472227 & .3083032 & .3123950 & .1522540 & .0462449 \\
739 & .0007288 & .0134879 & .1231200 & .2949390 & .3258251 & .1731879 & .0551737 \\
7410& .0004373 & .0080115 & .1002329 & .2779283 & .3342611 & .1966100 & .0650090 \\ \hline
75\end{tabular}
76\end{center}
77\caption{Neutron number distribution for induced fission in $^{235}$U.}
78\label{Neutron number distribution for induced fission in 235U}
79\end{table}
80
81\begin{table}[ht]
82\footnotesize
83\begin{center}
84\begin{tabular}{|c|c|c|} \hline
85$E_n$ & $\nu$=7 & $\bar{\nu}$ \\ \hline
860 & .0001449 & 2.4140000 \\
871 & .0004546 & 2.5236700 \\
882 & .0011093 & 2.6368200 \\
893 & .0019504 & 2.7623400 \\
904 & .0027307 & 2.8738400 \\
915 & .0039148 & 3.0386999 \\
926 & .0056322 & 3.2316099 \\
937 & .0079244 & 3.4272800 \\
948 & .0107009 & 3.6041900 \\
959 & .0135376 & 3.7395900 \\
9610& .0175099 & 3.8749800 \\ \hline
97\end{tabular}
98\end{center}
99\caption{Neutron number distribution for induced fission in $^{235}$U (continued).}
100\label{Neutron number distribution for induced fission in 235U (continued)}
101\end{table}
102
103\begin{table}[ht]
104\footnotesize
105\begin{center}
106\begin{tabular}{|c|ccccccc|} \hline
107$E_n$ & $\nu$=0 & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline
1080 & .0396484 & .2529541 & .2939544 & .2644470 & .1111758 & .0312261 & .0059347 \\
1091 & .0299076 & .2043215 & .2995886 & .2914889 & .1301480 & .0363119 & .0073638 \\
1102 & .0226651 & .1624020 & .2957263 & .3119098 & .1528786 & .0434233 & .0097473 \\
1113 & .0170253 & .1272992 & .2840540 & .3260192 & .1779579 & .0526575 & .0130997 \\
1124 & .0124932 & .0984797 & .2661875 & .3344938 & .2040116 & .0640468 & .0173837 \\
1135 & .0088167 & .0751744 & .2436570 & .3379711 & .2297901 & .0775971 & .0225619 \\
1146 & .0058736 & .0565985 & .2179252 & .3368863 & .2541575 & .0933127 & .0286200 \\
1157 & .0035997 & .0420460 & .1904095 & .3314575 & .2760413 & .1112075 & .0355683 \\
1168 & .0019495 & .0309087 & .1625055 & .3217392 & .2943792 & .1313074 & .0434347 \\
1179 & .0008767 & .0226587 & .1356058 & .3076919 & .3080816 & .1536446 & .0522549 \\
11810& .0003271 & .0168184 & .1111114 & .2892434 & .3160166 & .1782484 & .0620617 \\ \hline
119\end{tabular}
120\end{center}
121\caption{Neutron number distribution for induced fission in $^{238}$U.}
122\label{Neutron number distribution for induced fission in 238U}
123\end{table}
124
125\begin{table}[ht]
126\footnotesize
127\begin{center}
128\begin{tabular}{|c|cc|c|} \hline
129$E_n$ & $\nu$=7 & 8 & $\bar{\nu}$ \\ \hline
1300 & .0005436 & .0001158 & 2.2753781 \\
1311 & .0006947 & .0001751 & 2.4305631 \\
1322 & .0009318 & .0003159 & 2.5857481 \\
1333 & .0013467 & .0005405 & 2.7409331 \\
1344 & .0020308 & .0008730 & 2.8961181 \\
1355 & .0030689 & .0013626 & 3.0513031 \\
1366 & .0045431 & .0031316 & 3.2064881 \\
1377 & .0065387 & .0031316 & 3.3616731 \\
1388 & .0091474 & .0046284 & 3.5168581 \\
1399 & .0124682 & .0067176 & 3.6720432 \\
14010& .0166066 & .0095665 & 3.8272281 \\ \hline
141\end{tabular}
142\end{center}
143\caption{Neutron number distribution for induced fission in $^{238}$U (continued).}
144\label{Neutron number distribution for induced fission in 238U (continued)}
145\end{table}
146
147\begin{table}[ht]
148\footnotesize
149\begin{center}
150\begin{tabular}{|c|ccccccc|} \hline
151$E_n$ & $\nu$=0 & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline
1520 & .0108826 & .0994916 & .2748898 & .3269196 & .2046061 & .0726834 & .0097282 \\
1531 & .0084842 & .0790030 & .2536175 & .3289870 & .2328111 & .0800161 & .0155581 \\
1542 & .0062555 & .0611921 & .2265608 & .3260637 & .2588354 & .0956070 & .0224705 \\
1553 & .0045860 & .0477879 & .1983002 & .3184667 & .2792811 & .1158950 & .0301128 \\
1564 & .0032908 & .0374390 & .1704196 & .3071862 & .2948565 & .1392594 & .0386738 \\
1575 & .0022750 & .0291416 & .1437645 & .2928006 & .3063902 & .1641647 & .0484343 \\
1586 & .0014893 & .0222369 & .1190439 & .2756297 & .3144908 & .1892897 & .0597353 \\
1597 & .0009061 & .0163528 & .0968110 & .2558524 & .3194566 & .2134888 & .0729739 \\
1608 & .0004647 & .0113283 & .0775201 & .2335926 & .3213289 & .2356614 & .0886183 \\
1619 & .0002800 & .0071460 & .0615577 & .2089810 & .3200121 & .2545846 & .1072344 \\
16210& .0002064 & .0038856 & .0492548 & .1822078 & .3154159 & .2687282 & .1295143 \\ \hline
163\end{tabular}
164\end{center}
165\caption{Neutron number distribution for induced fission in $^{239}$Pu.}
166\label{Neutron number distribution for induced fission in 239Pu}
167\end{table}
168
169\begin{table}[ht]
170\footnotesize
171\begin{center}
172\begin{tabular}{|c|cc|c|} \hline
173$E_n$ & $\nu$=7 & 8 & $\bar{\nu}$ \\ \hline
1740 & .0006301 & .0001685 & 2.8760000 \\
1751 & .0011760 & .0003469 & 3.0088800 \\
1762 & .0025946 & .0005205 & 3.1628300 \\
1773 & .0048471 & .0007233 & 3.3167800 \\
1784 & .0078701 & .0010046 & 3.4707300 \\
1795 & .0116151 & .0014149 & 3.6246800 \\
1806 & .0160828 & .0029917 & 3.7786300 \\
1817 & .0213339 & .0020017 & 3.9325800 \\
1828 & .0274895 & .0039531 & 4.0865300 \\
1839 & .0347255 & .0054786 & 4.2404900 \\
18410& .0432654 & .0075217 & 4.3944400 \\ \hline
185\end{tabular}
186\end{center}
187\caption{Neutron number distribution for induced fission in $^{239}$Pu (continued).}
188\label{Neutron number distribution for induced fission in 239Pu (continued)}
189\end{table}
190
191\begin{figure}[ht]
192\begin{center}
193\includegraphics[scale=0.4, angle=-90]{hadronic/theory_driven/Fission/eps/U235_6MeV_nudist.ps}
194\end{center}
195\caption{Induced fission in $^{235}$U, incident neutron energy = 6MeV}
196\label{235U induced fission 6MeV}
197\end{figure}
198
199The first option
200%% \notgeant{ ({\tt nudist=0})}
201uses a fit to the Zucker
202and Holden data \cite{Zucker and Holden 1986} by
203Valentine~\cite{Valentine 1996}~\cite{Valentine 2000}. Valentine
204expressed the P$_{\nu}$'s (for $\nu=0$, ..., 8) as 5$^{th}$ order
205polynomials in $E_n$, the incident neutron energy. These functions
206P$_{\nu}(E_n)$ are used to sample the neutron multiplicity for
207$E_n$ in the range 0 to 10 MeV.  When $E_n$ is greater than 10 MeV,
208$E_n$=10 MeV is used to generate P$_{\nu}$.
209
210In addition to using the Zucker and Holden data above for incident
211neutron energies $E_n$ above 1 MeV, the second
212option
213%% \notgeant{ ({\tt nudist=1})}
214also uses the Gwin, Spencer and
215Ingle data~\cite{Gwin 1984} for $^{235}$U at thermal energies (0 MeV)
216to generate P$_{\nu}(E_n)$ polynomials. As in the first option, when
217$E_n$ is greater than 10 MeV, $E_n$=10 MeV is used to generate
218P$_{\nu}$.
219
220The third option
221%% \notgeant{ ({\tt nudist=2})}
222implements an alternative
223polynomial fit from Valentine ~\cite{Valentine 2000} of  P$_{\nu}$
224as a function of $\bar{\nu}$ instead of $E_n$, following the suggestion
225of Frehaut~\cite{Frehaut 1988}.
226%
227%{\it"A unique
228%relationship P$_{\nu}(\bar{\nu})$ can sufficiently
229%well capture the multiplicity distributions of a number of major
230%isotopes. This distribution is expressed as a function of the average
231%number of neutrons emitted $\bar{\nu}$.}"
232%
233When a neutron induces a fission, the algorithm converts the incident
234neutron energy $E_n$ into $\bar{\nu}$ using conversion tables
235(typically ENDF/EDNL), generates the P$_{\nu}$ distributions for that
236value of $\bar{\nu}$, and then samples the P$_{\nu}$ distributions to
237determine $\nu$. The least-square fits to the $^{235}$U data are used
238for both $^{235}$U and $^{233}$U neutron induced fission, the fits to
239$^{238}$U are used for $^{232}$U, $^{234}$U, $^{236}$U and $^{238}$U, while the
240fits to $^{239}$Pu are used for $^{239}$Pu and $^{241}$Pu. Data comes from
241Zucker and Holden. For $^{235}$U, data comes from Zucker and Holden
242for $E_n$ greater than 1 MeV, and Gwin, Spencer and
243Ingle for 0 MeV. The fits are only used when $\bar{\nu}$ is in the
244range of the $\bar{\nu}$'s for the tabulated data. Otherwise,
245Terrell's approximation is used.
246
247The fourth option, which is the default
248%% \notgeant{ ({\tt nudist=3})}
249, is similar to the third option except that the P$_{\nu}$ distributions
250are not functions of $\bar{\nu}$, but are left intact as multiplicity
251distributions for the data listed in Gwin, Spencer and
252Ingle, and for the data listed in Zucker and
253Holden. The multiplicity distribution P$_{\nu}$ from which the number
254of neutrons will be sampled is selected based on the value of
255$\bar{\nu}$ for a given induced fission event.  For instance, if
256P$_{\nu}(1 MeV)$ has $\bar{\nu}=2.4$, P$_{\nu}(2 MeV)$ has
257$\bar{\nu}=2.6$, and $\bar{\nu}$ is 2.45 at the energy of the incident
258fission-inducing neutron (this value $\bar{\nu}$ comes typically from
259cross-section data libraries such and ENDF/ENDL), the probability of
260sampling the number of neutrons ${\nu}$ from P$_{\nu}(1 MeV)$ and
261P$_{\nu}(2 MeV)$ will be 25\% and 75\%, respectively. This technique
262is only used when $\bar{\nu}$ is in the range of the $\bar{\nu}$'s for
263the tabulated data. Otherwise, Terrell's approximation is used.  This
264last way of computing ${\nu}$ has several advantages: first, the data
265as listed in the original papers is used exactly, as opposed to
266approximated by low-ordered polynomials least-square fitting the
267original data. Second, the data from the Gwin, Spencer and
268Ingle paper, and the data from the Zucker and Holden paper is
269entered as-is as a table in the code, and can easily be checked and
270maintained if necessary by the application developer. Third the method
271provides a simple and statistically correct mechanism of sampling the
272data tables.
273% \notgeant{The fission module behaves in this
274% manner when the 'nudist' option is set to 3, which is also the default
275% behavior.}
276
277\subsubsection*{Spontaneous fission data}
278
279For $^{252}$Cf, the fission module can be set to use either the
280measurements by Spencer~\cite{Spencer 1982}
281%% \notgeant{ ({\tt ndist=0})}
282, which is the default,
283or Boldeman~\cite{Boldeman 1985}
284%% \notgeant{ ({\tt ndist=1})}
285.
286
287For $^{238}$U, $^{238}$Pu, $^{240}$Pu, $^{242}$Pu, $^{242}$Cm,
288$^{244}$Cm, the probability distribution data comes from Holden and
289Zucker~\cite{Holden and Zucker BNL}. The measured data is summarized
290in Tables~\ref{Neutron number distribution for spontaneous fission}
291and \ref{Neutron number distribution for spontaneous fission (continued)}.
292
293\begin{table}[ht]
294\footnotesize
295\begin{center}
296\begin{tabular}{|c|ccccccc|} \hline
297isotope & $\nu$=0 & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline
298$^{238}$& .0481677 & .2485215 & .4253044 & .2284094 & .0423438 & .0072533 & 0 \\
299$^{238}$Pu & .0540647 & .2053880 & .3802279 & .2248483 & .1078646 & .0276366 & 0 \\
300$^{242}$Pu & .0679423 & .2293159 & .3341228 & .2475507 & .0996922 & .0182398 & .0031364 \\
301$^{242}$Cm & .0212550 & .1467407 & .3267531 & .3268277 & .1375090 & .0373815 & .0025912 \\
302$^{244}$Cm & .0150050 & .1161725 & .2998427 & .3331614 & .1837748 & .0429780 & .0087914 \\
303$^{252}$Cf~\cite{Spencer 1982} & .00211 & .02467 & .12290 & .27144 & .30763 & .18770 & .06770 \\
304$^{252}$Cf~\cite{Boldeman 1985} & .00209 & .02621 & .12620 & .27520 & .30180 & .18460 & .06680 \\ \hline
305\end{tabular}
306\end{center}
307\caption{Neutron number distribution for spontaneous fission.}
308\label{Neutron number distribution for spontaneous fission}
309\end{table}
310
311\begin{table}[ht]
312\footnotesize
313\begin{center}
314\begin{tabular}{|c|ccc|} \hline
315isotope & $\nu$=7 & 8 & 9 \\ \hline
316$^{238}$&  0 & 0 & 0 \\
317$^{238}$Pu &  0 & 0 & 0 \\
318$^{242}$Pu &  0 & 0 & 0 \\
319$^{242}$Cm & .0007551 & .0001867 & 0 \\
320$^{244}$Cm & .0002744 & 0 & 0 \\
321$^{252}$Cf~\cite{Spencer 1982}  & .01406 & .00167 & .0001 \\
322$^{252}$Cf~\cite{Boldeman 1985} & .01500 & .00210 & 0 \\ \hline
323\end{tabular}
324\end{center}
325\caption{Neutron number distribution for spontaneous fission (continued).}
326\label{Neutron number distribution for spontaneous fission (continued)}
327\end{table}
328
329If no full multiplicity distribution data exists, the fission module
330uses Terrell~\cite{Terrell 1957}'s approximation with $\bar{\nu}$ from
331Ensslin~\cite{Ensslin 1998}.  Ensslin has $\bar{\nu}$ data for the
332isotopes in table~\ref{Nubar for spontaneous fission}.
333
334\begin{table}[ht]
335\footnotesize
336\begin{center}
337\begin{tabular}{|c|c|} \hline
338isotope & $\bar{\nu}$ \\ \hline
339$^{232}$Th & 2.14 \\
340$^{232}$& 1.71\\
341$^{233}$& 1.76\\
342$^{234}$& 1.81\\
343$^{235}$& 1.86\\
344$^{236}$& 1.91\\
345$^{238}$& 2.01\\
346$^{237}$Np & 2.05\\
347$^{238}$Pu & 2.21\\
348$^{239}$Pu & 2.16\\
349$^{240}$Pu & 2.156\\
350$^{241}$Pu & 2.25\\
351$^{242}$Pu & 2.145\\
352$^{241}$Am & 3.22\\
353$^{242}$Cm & 2.54\\
354$^{244}$Cm & 2.72\\
355$^{249}$Bk & 3.40\\
356$^{252}$Cf & 3.757\\ \hline
357\end{tabular}
358\end{center}
359\caption{Average number of neutrons per spontaneous fission.}
360\label{Nubar for spontaneous fission}
361\end{table}
362
363\subsection{Neutron energy distribution}
364
365All of the fission spectra in the Evaluated Nuclear Data Library,
366ENDL~\cite{ENDL 1975} are defined by a simple analytical function, a
367Watt spectrum defined as
368
369\begin{equation}
370W(a,b,E') = Ce^{-aE'}sinh(\sqrt{bE'})
371\end{equation}
372
373where $C=\sqrt{\pi\frac{b}{4a}}\frac{e^{\frac{b}{4a}}}{a}$, and E' is the secondary neutron energy.
374The Watt spectrum for $^{235}$U and an incident neutron energy of 6 MeV is shown in Fig.~\ref{Watt spectrum for U235}.
375
376\begin{figure}[ht]
377\begin{center}
378\includegraphics[scale=0.4, angle=-90]{hadronic/theory_driven/Fission/eps/Wattspectrum_U235_6MeV.ps}
379\end{center}
380\caption{Watt spectrum for $^{235}$U and an incident neutron energy of 6 MeV.}
381\label{Watt spectrum for U235}
382\end{figure}
383
384The coefficients a and b vary weakly from one isotope to another and
385also vary weakly with the incident neutron energy.  In the fission
386module, b is set identical to 1.0, and a is parametrized as a simple
387function of the incident neutron energy, as implemented in
388TART~\cite{TART 2003, Cullen 2004}.  The fissioning isotope and
389incident neutron energy determine the value of a, and the energy E' of
390the secondary neutron emitted is sampled using the Los Alamos' Monte
391Carlo sampler attributed to Mal Kalos~\cite{Everett 1983}.
392
393The Watt spectrum is used for all isotopes except $^{252}$Cf, for which a
394special treatment summarized by Valentine~\cite{Valentine 2000} is
395applied.  The neutron spectrum for $^{252}$Cf is sampled from
396the Mannhart~\cite{Mannhart 1987} corrected Maxwellian distribution,
397the Madland and Nix~\cite{Madland 1984}
398or the Watt fission spectra from
399Froehner~\cite{Froehner 1990}.
400%% \notgeant{These options are selected by the internal variable {\tt neng=0(default),1,2} respectively.}
401The Mannhart distribution is used by default.
402
403%\section{Gammas emitted by fission\label{gammas}}
404
405\subsection{Gamma-ray number distribution}
406
407The fission module uses Brunson~\cite{Brunson 1982}'s double Poisson
408model for the spontaneous fission gamma ray multiplicity of $^{252}$Cf
409(see Fig.~\ref{Fission gamma-ray multiplicity for 252Cf}).
410
411\begin{equation}
412\Pi(G)=0.682\frac{7.20^Ge^{-7.20}}{G!}+0.318\frac{10.71^Ge^{-10.72}}{G!}
413\end{equation}
414
415where $G$ is the gamma ray multiplicity.
416\begin{figure}[ht]
417\begin{center}
418\includegraphics[scale=0.4, angle=-90]{hadronic/theory_driven/Fission/eps/Cf252_nugdist.ps}
419\end{center}
420\caption{Fission gamma-ray multiplicity for $^{252}$Cf.}
421\label{Fission gamma-ray multiplicity for 252Cf}
422\end{figure}
423
424The prompt gamma ray multiplicity ranges from 0 to 20 gama rays per
425fission with an average of 8.32 gamma rays per fission.  This model is
426a fit to experimental data measured by Brunson himself.
427
428For other isotopes, there is no data available for the multiplicity of
429prompt gamma rays.  Valentine~\cite{Valentine 2001} used an
430approximation that was adopted by the fission module.  The probability
431of emitting $G$ fission gamma rays obeys the negative binomial
432distribution:
433
434\begin{equation}
435\Pi(G)=\left(\begin{array}{c} \alpha+G-1 \\ G \end{array} \right) p^G(1-p)^G
436\end{equation}
437
438where the parameter $p$ can be written as
439$p=\frac{\alpha}{\alpha+\bar{G}}$, $\alpha$ is approximately 26 and
440$\bar{G}$ is the average number of gamma rays per fission.  $\bar{G}$
441is approximated by
442
443\begin{equation}
444\bar{G} = \frac{E_t(\bar{\nu}, Z, A)}{\bar{E}}
445\end{equation}
446
447where $E_t(\bar{\nu}, Z,
448A)=(2.51(\pm0.01)-1.13\cdot10^{-5}(\pm7.2\cdot10^{-8})Z^2\sqrt{A})\nu+4.0$
449is the total prompt gamma ray energy, and $\bar{E} =
450-1.33(\pm0.05)+119.6(\pm2.5)\frac{Z^{\frac{1}{3}}}{A}$ is the average
451prompt gamma ray energy.  The multiplicity distribution for the
452spontaneous fission of $^{238}$U is shown in Fig.~\ref{Fission
453gamma-ray multiplicity for 238U}.
454
455\begin{figure}[ht]
456\begin{center}
457\includegraphics[scale=0.4, angle=-90]{hadronic/theory_driven/Fission/eps/U238_nugdist.ps}
458\end{center}
459\caption{Fission gamma-ray multiplicity for spontaneous fission of $^{238}$U.}
460\label{Fission gamma-ray multiplicity for 238U}
461\end{figure}
462
463These multiplicity distributions are only estimates and are not
464measured data.  The fission module uses this model for estimating the
465number of gamma rays from both spontaneous and induced fission.
466
467\subsection{Gamma-ray energy distribution}
468
469The fission module implements Valentine's~\cite{Valentine 2000} model
470for the energy spectra of fission gamma-rays.  The only measured
471energy spectra for fission gamma-rays are for the spontaneous fission
472of $^{252}$Cf and for the thermal-neutron-induced fission of $^{235}$U.
473Both spectra are similar~\cite{Wagemans 1991}.  Because the $^{235}$U
474measurements are more precise, this data will be used for the fission
475gamma-ray spectrum.  The energy spectrum of the prompt fission gamma
476rays is obtained from Maienschein's measurements~\cite{Maienschein
4771958}~\cite{Goldstein 1959}:
478
479\begin{equation}
480N(E) = \left\{
481\begin{array}{ll}
48238.13 (E-0.085)e^{1.648E}&  E<0.3\ \mathrm{MeV} \\
483
48426.8 e^{-2.30E}          &  0.3<E<1.0\ \mathrm{MeV}\\
485
486 8.0 e^{-1.10E}          &  1.0<E<8.0\ \mathrm{MeV}
487\end{array}
488\right.
489\end{equation}
490
491This probability function is shown in Fig.~\ref{Fission gamma-ray
492spectrum for 235U}.  Because gamma ray energy spectra are not
493available, the spectrum above is used for all isotopes, both for
494spontaneous and induced fission.
495
496\begin{figure}[ht]
497\begin{center}
498\includegraphics[scale=0.4, angle=-90]{hadronic/theory_driven/Fission/eps/U235_gspectrum.ps}
499\end{center}
500\caption{Fission gamma-ray spectrum for $^{235}$U.}
501\label{Fission gamma-ray spectrum for 235U}
502\end{figure}
503
504
505\subsection{Implementation}
506
507For neutron induced fission, this model is intended to be used with
508the low energy neutron interaction data libraries with class
509\textit{G4Fisslib} specified in the physics list as the
510\textit{G4HadronFissionProccess} instead of class
511\textit{G4NeutronHPFission}.
512%% \notgeant{
513%% Here is an example code snippet for registering this model in the physics
514%% list: \input{snippet}}
515
516The constructor of \textit{G4FissLib}
517does two things. First it reads the necessary fission cross-section
518data in the file located in the directory specified by the environment
519variable \textit{NeutronHPCrossSections}. It does this by initializing
520one object of class \textit{G4NeutronHPChannel} per isotope present in
521the geometry. Second, it registers an instance of
522\textit{G4FissionLibrary} for each isotope as the model for that
523reaction/channel. When Geant4 tracks a neutron to a reaction site and
524the fission library process is selected among all other process for
525neutron reactions, the method \textit{G4FissLib::ApplyYourself} is
526called, and one of the fissionable isotopes present at the reaction
527site is selected. This method in turn calls
528\textit{G4NeutronHPChannel::ApplyYourself} which calls
529\textit{G4FissionLibrary::ApplyYourself}, where the induced neutrons
530and gamma-rays are emitted by sampling the fission library.
531
532For spontaneous fission the user must provide classes {\it
533PrimaryGeneratorAction}, {\it MultipleSource}, {\it
534MultipleSourceMessenger}, {\it SingleSource}, {\it SponFissIsotope} to
535generate spontaneous fission neutrons and gammas. Examples of these
536classes can be downloaded from {\tt
537http://nuclear.llnl.gov/CNP/simulation}. Spontaneous fissions are
538generated in the {\it PrimaryGeneratorAction} class.
539The spontaneous fission
540source needs to be described in terms of geometry, isotopic
541composition and fission strength. Once this information is given, the
542constructor creates as many spontaneous fission isotopes of class {\it
543SponFissIsotope} as specified, and adds them to the source of class
544{\it MultipleSource}. When Geant needs to generate particles, it calls
545the method {\it PrimaryGeneratorAction::GeneratePrimaries}, which
546first sets the time of the next fission based on the fission rates
547entered in the constructor, and then calls the method {\it
548MultipleSource::GeneratePrimaryVertex} which determines which one of
549the spontaneous fission isotopes will fission. This method in turn
550calls the method {\it SponFissIsotope::GeneratePrimaryVertex} for the
551chosen isotope. It is in this method that the neutrons and photons
552sampled from the fission library are added to the stack of secondary
553particles.  Sources other than spontaneous fission isotopes can be
554added to the source of class {\it MultipleSource}. For instance, a
555background term emitting a large number of background gamma-rays can
556be added, as long as it derives from the class {\it SingleSource}. The
557intensity of that source would be set the same way as for the
558spontaneous fission isotope sources.
559
560Different sampling methods can be selected by calling the following functions.
561\subsection*{void setnudist\_(int *nudist)
562\label{setnudist}}
563
564This selects the data to be sampled for the neutron number
565distributions for neutron-induced fission. If there is no data
566available, then in all cases the Terrell approximation is used.
567The argument \textit{nudist} can take 3 values:
568
569\begin{tabbing}
570
571\indent 0 \hspace*{.6in} 
572\= \parbox[t]{4in}{ Use the fit
573to the Zucker and Holden tabulated P$_\nu$ distributions as a function
574of energy for $^{235}$U, $^{238}$U and $^{239}$Pu.}\\
575
576\indent 1
577\> \parbox[t]{4in}
578{Use fits to the Zucker and Holden tabulated
579P$_\nu$  distribution as a function of energy for $^{238}$U and
580 $^{239}$Pu, and a fit to the Zucker and Holden data as well as
581the Gwin, Spencer and Ingle data (at thermal
582 energies) as a function of energy for $^{235}$U.}\\
583
584\indent 2
585\> \parbox[t]{4in}
586{Use the fit to the Zucker and Holden
587tabulated P$_\nu$ distributions as a function of $\bar{\nu}$. The $^{238}$U
588fit is used for the $^{232}$U, $^{234}$U,
589$^{236}$U and $^{238}$U isotopes, the $^{235}$U fit for $^{233}$U
590and $^{235}$U, the $^{239}$Pu fit for
591$^{239}$Pu and $^{241}$Pu.}\\
592
593\indent 3
594(default) \> \parbox[t]{4in}
595{Use the discrete Zucker and Holden
596tabulated P$_\nu$ distributions and corresponding $\bar{\nu}$s.
597Sampling based on the incident neutron $\bar{\nu}$. The $^{238}$U data tables
598are used for the $^{232}$U, $^{234}$U, $^{236}$U
599 and $^{238}$U isotopes, the $^{235}$U data for $^{233}$U and
600$^{235}$U, the $^{239}$Pu data for $^{239}$Pu and $^{241}$Pu.}
601
602\end{tabbing}
603
604\subsection*{void setcf252\_(int *ndist, int *neng)}
605
606This function is specific to the spontaneous fission of $^{252}$Cf. It
607selects the data to be sampled for the neutron number and energy
608distributions and takes the following arguments:
609
610\begin{tabbing}
611\indent ndist: \= Sample the number of neutrons \\
612\indent \> 0 (default) \= 
613from the tabulated data measured by Spencer \\
614\indent \> 1 \> from
615Boldeman's data \\
616\\
617\indent neng: Sample the spontaneous fission
618neutron energy \\
619\indent \> 0 (default)\> from Mannhart corrected  Maxwellian spectrum \\
620\indent \> 1 \> from Madland-Nix theoretical spectrum \\
621\indent \> 2 \> from the Froehner Watt spectrum \\
622\end{tabbing}
Note: See TracBrowser for help on using the repository browser.