source: trunk/documents/UserDoc/UsersGuides/PhysicsReferenceManual/latex/hadronic/theory_driven/Fission/ParamFission.tex @ 1292

Last change on this file since 1292 was 1208, checked in by garnier, 15 years ago

CVS update

File size: 7.3 KB
Line 
1
2\section{Parameterized Fission Model}
3
4\subsection{Fission Process Simulation}
5
6\subsubsection{Atomic number distribution of fission products}
7
8\hspace{1.0em}As seen in experimental data \cite{VH73} the mass
9distribution of fission products consists of symmetric and asymmetric
10components:
11\begin{equation}
12\label{FPS1} F(A_f) = F_{sym}(A_f) + \omega F_{asym}(A_f),
13\end{equation}
14where $\omega(U,A,Z)$ defines the relative contribution of each component
15and depends on the excitation energy $U$ and $A,Z$ of the fissioning
16nucleus.  It was found \cite{ABIM93} that experimental data can be
17approximated with good accuracy, if one takes
18\begin{equation}
19\label{FPS2} F_{sym}(A_f) = \exp{[-\frac{(A_f - A_{sym})^2}{2\sigma_{sym}^2}]}
20\end{equation}
21and
22\begin{equation}
23\begin{array}{c}
24\label{FPS3} F_{asym}(A_f) = \exp{[-\frac{(A_f - A_{2})^2}{2\sigma_{2}^2}]} +
25\exp{[-\frac{{A_f - (A - A_{2})}^2}{2\sigma_{2}^2}]} + \\
26+ C_{asym}\{\exp{[-\frac{(A_f - A_{1})^2}{2\sigma_{1}^2}]} +
27\exp{[-\frac{{A_f - (A - A_{1})}^2}{2\sigma_{2}^2}]}\},
28\end{array}
29\end{equation}
30where $A_{sym} = A/2$, $A_1$ and $A_2$ are the mean values and
31$\sigma^2_{sym}$, $\sigma^2_1$ and $\sigma^2_2$ are the dispersions of the
32Gaussians, respectively.  From an analysis of experimental data
33\cite{ABIM93} the parameter $C_{asym} \approx 0.5$ was defined, followed by
34the dispersion values:
35\begin{equation}
36\label{FPS4} \sigma^2_{sym} = \exp{(0.00553U + 2.1386)},
37\end{equation} 
38where $U$ is in MeV,
39\begin{equation}
40\label{FPS5} 2\sigma_1 = \sigma_2 = 5.6 \ MeV
41\end{equation}
42for $A \leq 235$ and
43\begin{equation}
44\label{FPS6} 2\sigma_1 = \sigma_2 = 5.6 + 0.096 (A - 235) \ MeV
45\end{equation}
46for $A > 235$ were found.
47
48The weight $\omega(U,A,Z)$ was approximated as follows
49\begin{equation}
50\label{FPS7} \omega = \frac{\omega_{a} - F_{asym}(A_{sym})}
51{1 - \omega_a F_{sym}((A_1 + A_2)/2)}.
52\end{equation}
53The values of $\omega_a$ for nuclei with $96 \geq Z \geq 90$ were
54approximated by
55\begin{equation}
56\label{FPS8} \omega_a(U) = \exp{(0.538U - 9.9564)}
57\end{equation}
58for $U \leq 16.25$ MeV,
59\begin{equation}
60\label{FPS9} \omega_a(U) = \exp{(0.09197U - 2.7003)}
61\end{equation}
62for $U > 16.25$ MeV and
63\begin{equation}
64\label{FPS10} \omega_a(U) = \exp{(0.09197U - 1.08808)}
65\end{equation}
66for $z = 89$.
67An approximation for nuclei with $Z \leq 88$ \cite{ABIM93} is given by:
68\begin{equation}
69\label{FPS11}\omega_a(U) =
70\exp{[0.3(227 - a)]} \exp{ \{0.09197[U - (B_{fis} - 7.5)]
71- 1.08808 \}},
72\end{equation}
73where for $A > 227$ and $U < B_{fis} - 7.5$ the corresponding factors occurring
74in the exponential functions vanish.
75
76\subsubsection{Charge distribution of fission products}
77
78\hspace{1.0em} For a given mass of the fragment $A_f$ the experimental
79data \cite{VH73} on the charge $Z_f$ distribution of fragments are well
80approximated by a Gaussian with dispersion $\sigma^2_{z} = 0.36$ and the
81average $<Z_f>$ is described by the expression:
82\begin{equation}
83\label{FPS12} <Z_f> = \frac{A_f}{A}Z + \Delta Z,
84\end{equation}
85when parameter $\Delta Z = -0.45$ for $A_f \geq 134$, $\Delta Z = -
860.45(A_f -A/2)/(134 - A/2)$ for $ A - 134 < A_f < 134$ and $\Delta Z =
870.45$ for $A \leq A - 134$.
88
89After the sampling of fragment atomic mass numbers and fragment charges,
90we must check that the fragment ground state masses do not exceed the
91initial energy.  The maximal fragment kinetic energy is calculated as
92\begin{equation}
93\label{FPS13a}T^{max} < U + M(A,Z) - M_1(A_{f1}, Z_{f1}) - M_2(A_{f2}, Z_{f2}),
94\end{equation}
95where $U$ and $M(A,Z)$ are the excitation energy and mass of the initial
96nucleus.  $M_1(A_{f1}, Z_{f1})$ and $M_2(A_{f2}, Z_{f2})$ are the masses
97of the first and second fragment, respectively.
98
99\subsubsection{Kinetic energy distribution of fission products}
100
101\hspace{1.0em} The average kinetic energy $<T_{kin}>$ (in MeV) of fission
102fragments has an empiricaly defined \cite{VKW85} dependence on the mass and
103charge of a fissioning nucleus:
104\begin{equation}
105\label{FPS13}<T_{kin}> = 0.1178 Z^2/A^{1/3} + 5.8.
106\end{equation}
107This energy is distributed differently in cases of symmetric and
108asymmetric modes of fission.  It follows from the analysis of data
109\cite{ABIM93} that in the asymmetric mode, the average kinetic energy of
110fragments is higher than that in the symmetric one by approximately
111$12.5$ MeV.  Empirical expressions have been suggested \cite{ABIM93}
112to approximate the average values of the kinetic energies $<T_{kin}^{sym}$ 
113and $<T_{kin}^{asym}>$ for the symmetric and asymmetric modes of fission,
114\begin{equation}
115\label{FPS14} <T_{kin}^{sym}> = <T_{kin}> - 12.5 W_{asim},
116\end{equation}
117\begin{equation}
118\label{FPS15} <T_{kin}^{asym}> = <T_{kin}> + 12.5 W_{sim},
119\end{equation} 
120where
121\begin{equation}
122\label{FPS16} W_{sim} = \omega \int F_{sim}(A)dA/\int F(A)dA
123\end{equation}
124and
125\begin{equation}
126\label{FPS17} W_{asim} = \int F_{asim}(A)dA/\int F(A)dA,
127\end{equation} 
128respectively.  For symmetric fission the experimental data for the
129ratio of the average kinetic energy of fission fragments
130$<T_{kin}(A_f)>$ to this maximum energy $<T^{max}_{kin}>$ as a function
131of the mass of a larger fragment $A_{max}$, can be approximated by the
132expressions
133\begin{equation}
134\label{FPS18} <T_{kin}(A_f)>/<T^{max}_{kin}> =
1351 - k [(A_f - A_{max})/A]^2
136\end{equation}
137for $A_{sim} \leq A_f \leq A_{max} + 10$ and
138\begin{equation}
139\label{FPS19} <T_{kin}(A_f)>/<T^{max}_{kin}> =
1401 - k(10/A)^2 - 2 (10/A)k(A_f - A_{max} - 10)/A .
141\end{equation}
142These are valid for $A_f > A_{max} + 10$, where $A_{max} = A_{sim}$ and
143$k = 5.32$ for symmetric fission, and $A_{max} = 134$ and $k = 23.5$ for
144asymmetric fission.  For both modes of fission the distribution over the
145kinetic energy of fragments $T_{kin}$ is chosen to be Gaussian with their
146own average values $<T_{kin}(A_f)>= <T_{kin}^{sym}(A_f)>$ or
147$<T_{kin}(A_f)>=<T_{kin}^{asym}(A_f)>$, and dispersions $\sigma^2_{kin}$
148equal $8^2$ MeV and $10^2$ MeV$^2$ for symmetrical and asymmetrical
149modes, respectively.
150
151\subsubsection{Calculation of the excitation energy of fission products}
152
153\hspace{1.0em} The total excitation energy of fragments $U_{frag}$ 
154can be defined according to the equation
155\begin{equation}
156\label{FPS21} U_{frag} = U + M(A,Z) - M_1(A_{f1}, Z_{f1}) - M_2(A_{f2}, Z_{f2}) -
157T_{kin},
158\end{equation}
159where $U$ and $M(A,Z)$ are the excitation energy and mass of the initial
160nucleus, $T_{kin}$ is the fragment kinetic energy, $M_1(A_{f1},
161Z_{f1})$,  and $M_2(A_{f2}, Z_{f2})$ are the masses of the first and second
162fragments, respectively.
163
164The value of the excitation energy of fragment $U_f$ determines the fragment
165temperature ($T = \sqrt{U_f/a_f}$, where $a_f \sim A_f$ is the parameter
166of fragment level density).  Assuming that after disintegration
167fragments have the same temperature as the initial nucleus, then the total
168excitation energy will be distributed between fragments in proportion to
169their mass numbers.  One then obtains
170\begin{equation}
171\label{FPS22} U_f = U_{frag} \frac{A_f}{A}.
172\end{equation}
173
174\subsubsection{Excited fragment momenta}
175
176\hspace{1.0em} Assuming that the fragment kinetic energy $T_f = 
177P^2_f/(2(M(A_{f},Z_{f}+U_f)$, we are able to calculate the absolute value
178of fragment c.m. momentum
179\begin{equation}
180\label{FPS23}
181P_f=\frac{(M_1(A_{f1},Z_{f1}+U_{f1})(M_2(A_{f2},Z_{f2}+U_{f2})}{
182M_1(A_{f1},Z_{f1})+U_{f1} + M_2(A_{f2},Z_{f2})+U_{f2}}T_{kin},
183\end{equation}
184and its components, assuming the isotropic distribution of fragments.
Note: See TracBrowser for help on using the repository browser.