source: trunk/documents/UserDoc/UsersGuides/PhysicsReferenceManual/latex/hadronic/theory_driven/Multifragmentation/MultFragSim.tex @ 1211

Last change on this file since 1211 was 1208, checked in by garnier, 15 years ago

CVS update

File size: 10.2 KB
Line 
1\section{Multifragmentation process simulation.}
2\hspace{1.0em} The GEANT4 multifragmentation model is capable to predict
3final states as result of an highly excited nucleus statistical break-up.
4
5The initial information for calculation of
6multifragmentation stage consists from the atomic mass number $A$,
7charge $Z$ of excited nucleus and its excitation
8energy $U$.  At high excitation energies $U/A > 3$ \ MeV the
9multifragmentation mechanism, when nuclear system can eventually breaks
10down into fragments, becomes the dominant. Later on the excited primary
11fragments propagate independently in the mutual Coulomb field and
12undergo de-excitation.  Detailed description of multifragmentation
13mechanism and model can be found in review \cite{BBIMS95}.
14
15\subsection{Multifragmentation probability.}
16
17\hspace{1.0em}The probability of a breakup channel $b$ is given by the
18expression (in the so-called microcanonical approach \cite{BBIMS95},
19\cite{Botvina87}):
20\begin{equation}
21\label{MFS1}W_b(U,A,Z)=\frac{1}{\sum_{b}\exp [S_b(U,A,Z)]} \exp [S_b(U,A,Z)],
22\end{equation}
23where $S_b(U,A,Z)$ is the entropy of a multifragment state corresponding
24to the breakup channel $b$. The channels $\{b\}$ can be parametrized by
25set of fragment multiplicities $N_{A_f,Z_f}$ for fragment with atomic
26number $A_f$ and charge $Z_f$. All partitions $\{b\}$ should satisfy
27constraints on the total mass and charge:
28\begin{equation}
29\label{MFS2}\sum_{f}N_{A_f,Z_f}A_f = A
30\end{equation}
31and
32\begin{equation}
33\label{MFS3}\sum_{f}N_{A_f,Z_f}Z_f = Z.
34\end{equation}
35It is assumed \cite{Botvina87} that thermodynamic equilibrium is
36established in every channel, which can be characterized by the channel
37temperature $T_b$.
38
39The channel temperature $T_b$ is determined by the equation constraining
40the average energy $E_b(T_b, V)$ associated with partition $b$:
41\begin{equation}
42\label{MFS4}E_b(T_b, V)= U+E_{ground} = U+M(A,Z),
43\end{equation}
44where $V$ is the system volume, $E_{ground}$ is the ground state (at
45$T_b = 0$) energy of system and $M(A,Z)$ is the mass of nucleus.
46
47According to the conventional thermodynamical formulae the average energy
48of a partitition $b$ is expressed through the system free energy $F_b$
49as follows
50\begin{equation}
51\label{MFS5}E_b(T_b, V)= F_b(T_b,V) +T_bS_b(T_b,V).
52\end{equation} 
53Thus, if free energy $F_b$ of a partition $b$ is known, we can find
54the channel temperature $T_b$ from Eqs. ($\ref{MFS4}$) and ($\ref{MFS5}$),
55then the entropy $S_b = -dF_b/dT_b$ and hence, decay probability $W_b$
56defined by Eq. ($\ref{MFS1}$) can be calculated.
57
58Calculation of the free energy is based on the use of the liquid-drop
59description of individual fragments \cite{Botvina87}.  The free energy
60of a partition $b$ can be splitted into several terms:
61\begin{equation}
62\label{MFS6}F_b(T_b,V) =  \sum_{f}F_f(T_b,V) + E_{C}(V),
63\end{equation}
64where $F_f(T_b,V)$ is the average energy of an individual fragment
65including the volume
66\begin{equation} 
67\label{MFS7} F^V_f = [-E_0 - T^2_b/\epsilon(A_f)]A_f,
68\end{equation}
69surface
70\begin{equation}
71\label{MFS8}F^{Sur}_f = \beta_0[(T_c^2 - T^2_b)/(T_c^2 + T^2_b)]^{5/4}A_f^{2/3}
72= \beta(T_b)A_f^{2/3},
73\end{equation}
74symmetry
75\begin{equation}
76\label{MFS9}F^{Sim}_f = \gamma(A_f - 2Z_f)^2/A_f,
77\end{equation}
78Coulomb
79\begin{equation}
80\label{MFS10}F^{C}_f = \frac{3}{5}\frac{Z_f^2e^2}{r_0A_f^{1/3}}
81[1 - (1+ \kappa_{C})^{-1/3}]
82\end{equation}
83and translational
84\begin{equation}
85\label{MFS11}F^{t}_f = -T_b\ln{(g_fV_f/\lambda^3_{T_b})} +
86T_b\ln{(N_{A_f,Z_f}!)}/ N_{A_f,Z_f}
87\end{equation}
88terms  and the last term
89\begin{equation}
90\label{MFS12} E_{C}(V)=\frac{3}{5}\frac{Z^2e^2}{R} 
91\end{equation} 
92is the Coulomb energy of the uniformly charged sphere with charge $Ze$
93and the radius $R = (3V/4\pi)^{1/3}= r_0A^{1/3}(1 + \kappa_{C})^{1/3}$,
94where $\kappa_{C} = 2$ \cite{Botvina87}.
95
96Parameters $E_0 = 16$ \ MeV, $\beta_0 = 18$\ MeV, $\gamma = 25$ \ MeV
97are the coefficients of the Bethe-Weizsacker mass formula at $T_b = 0$.
98$g_f=(2S_f+1)(2I_f+1)$ is a spin $S_f$ and isospin $I_f$ degeneracy
99factor for fragment ( fragments with $A_f > 1$ are treated as the
100Boltzmann particles), $\lambda_{T_b} = (2\pi h^2/m_N T_b)^{1/2}$ is the
101thermal wavelength, $m_N$ is the nucleon mass, $r_0 = 1.17$ \ fm,
102$T_c=18$ \ MeV is the critical temperature, which corresponds to the
103liquid-gas phase transition. $\epsilon(A_f) = \epsilon_0[1 + 3/(A_f-1)]$
104is the inverse level density of the mass $A_f$ fragment and
105$\epsilon_0=16$ \ MeV is considered as a variable model parameter, whose
106value depends on the fraction of energy transferred to the internal
107degrees of freedom of fragments \cite{Botvina87}. The free volume $V_f
108=\kappa V=\kappa\frac{4}{3}\pi r_0^4 A$ available to the translational
109motion of fragment, where $\kappa \approx 1$ and its dependence on the
110multiplicity of fragments was taken from \cite{Botvina87}:
111\begin{equation}
112\label{MFS13}\kappa =[1 + \frac{1.44}{r_0A^{1/3}}(M^{1/3} - 1)]^{3} - 1.
113\end{equation}
114For $M = 1$ $\kappa = 0$.
115
116The light fragments with $A_f < 4$, which have no excited
117states, are considered as elementary particles characterized by the
118empirical masses $M_f$, radii $R_f$, binding energies $B_f$, spin
119degeneracy factors $g_f$ of ground states.  They contribute to the
120translation free energy and Coulomb energy.
121
122
123\subsection{ Direct simulation of the low multiplicity multifragment
124disintegration.} 
125
126\hspace{1.0em}At comparatively low excitation energy (temperature)
127system will disintegrate into a small number of fragments $M \leq 4$ and
128number of channel is not huge. For such situation a direct
129(microcanonical) sorting of all decay channels can be performed. Then,
130using Eq. ($\ref{MFS1}$), the average multiplicity value $<M>$ can be
131found.  To check that we really have the situation with the low
132excitation energy, the obtained value of $<M>$ is examined to obey the
133inequality $<M> \leq M_0$, where $M_0 = 3.3$ and $M_0 = 2.6$ for $A \sim
134100$ and for $A \sim 200$, respectively \cite{Botvina87}.  If the
135discussed inequality is fulfilled, then the set of channels under
136consideration is belived to be able for a correct description of the
137break up. Then using calculated according Eq. ($\ref{MFS1}$)
138probabilities we can randomly select a specific channel with given
139values of $A_f$ and $Z_f$.
140 
141
142\subsection{ Fragment multiplicity distribution.}
143
144\hspace{1.0em}The individual fragment multiplicities $N_{A_f,Z_f}$ in
145the so-called macrocanonical ensemble \cite{BBIMS95} are distributed
146according to the Poisson distribution:
147\begin{equation}
148\label{MFS14} P(N_{A_f,Z_f}) = \exp{(-\omega_{A_f,Z_f})}
149\frac{\omega_{A_f,Z_f}^{N_{A_f,Z_f}}}{N_{A_f,Z_f}!}
150\end{equation}
151with mean value $<N_{A_f,Z_f}>=\omega_{A_f,Z_f}$ defined as
152\begin{equation}
153\label{MFS15} <N_{A_f,Z_f}> =g_fA_f^{3/2}\frac{V_f}{\lambda^3_{T_b}}
154\exp{[\frac{1}{T_b}(F_f(T_b,V)-F^{t}_f(T_b,V) - \mu A_f - \nu Z_f)]},
155\end{equation}
156where $\mu$ and $\nu$ are chemical potentials. The chemical potential
157are found by substituting Eq. ($\ref{MFS15}$) into the system of
158constraints:
159\begin{equation}
160\label{MFS16}\sum_{f}<N_{A_f,Z_f}>A_f = A
161\end{equation}
162and
163\begin{equation}
164\label{MFS17}\sum_{f}<N_{A_f,Z_f}>Z_f = Z
165\end{equation}
166and solving it by iteration.
167 
168 
169\subsection{ Atomic number distribution of fragments.}
170
171\hspace{1.0em}Fragment atomic numbers $A_f > 1$ are also distributed
172according to the Poisson distribution \cite{BBIMS95} (see
173Eq. ($\ref{MFS14}$)) with mean value $<N_{A_f}>$ defined as
174\begin{equation}
175\label{MFS18} <N_{A_f}> = A_f^{3/2}\frac{V_f}{\lambda^3_{T_b}}
176\exp{[\frac{1}{T_b}(F_f(T_b,V)-F^{t}_f(T_f,V) - \mu A_f - \nu <Z_f>)]},
177\end{equation}
178where calculating  the  internal free energy 
179$F_f(T_b,V)-F^{t}_f(T_b,V)$  one has to substitute $Z_f
180\rightarrow <Z_f>$. The average  charge $<Z_f>$ for fragment having atomic
181number $A_f$ is given by
182\begin{equation}
183\label{MFS19}<Z_f(A_f)> = \frac{(4\gamma + \nu)A_f}{8\gamma + 2[1 - (1 +
184\kappa)^{-1/3}]A_f^{2/3}}.
185\end{equation}
186
187\subsection{ Charge distribution of fragments.}
188
189\hspace{1.0em}At given mass of fragment $A_f > 1$ the charge $Z_f$
190distribution of fragments are described by Gaussian
191\begin{equation}
192\label{MFS20} P(Z_f(A_f))\sim \exp{[-\frac{(Z_f(A_f) -
193<Z_f(A_f)>)^2}{2(\sigma_{Z_f}(A_f))^2}]}
194\end{equation} 
195with dispertion
196\begin{equation}
197\label{MFS21}\sigma_{Z_f(A_f)} = \sqrt{\frac{A_fT_b}
198{8 \gamma + 2[1 - (1 +\kappa)^{-1/3}]A_f^{2/3}}} 
199\approx \sqrt{\frac{A_fT_b}{8 \gamma}}.
200\end{equation} 
201and the average charge $<Z_f(A_f)>$ defined by Eq. ($\ref{MFS17}$).
202
203\subsection{ Kinetic energy distribution of fragments.}
204
205\hspace{1.0em}It is assumed \cite{Botvina87} that at the instant of the
206nucleus break-up the kinetic energy of the fragment $T^{f}_{kin}$ in the
207rest of nucleus obeys the Boltzmann distribution at given temperature
208$T_b$:
209\begin{equation}
210\label{MFS22} \frac{dP(T^{f}_{kin})}{dT^{f}_{kin}}\sim \sqrt{T^{f}_{kin}}
211\exp{(-T^{f}_{kin}/T_b)}.
212\end{equation}
213Under assumption of thermodynamic equilibrium the fragment have
214isotropic velocities distribution in the rest frame of nucleus. The
215total kinetic energy of fragments should be equal $\frac{3}{2}MT_b$,
216where $M$ is fragment multiplicity, and the total fragment momentum
217should be equal zero. These conditions are fullfilled by choosing
218properly the momenta of two last fragments.
219
220The initial conditions for the divergence of the fragment system are
221determined by random selection of fragment coordinates distributed with
222equal probabilities over the break-up volume $V_f = \kappa V$. It can be
223a sphere or prolongated ellipsoid. Then Newton's equations of motion are
224solved for all fragments in the self-consistent time-dependent Coulomb
225field \cite{Botvina87}.  Thus the asymptotic energies of fragments
226determined as result of this procedure differ from the initial values by
227the Coulomb repulsion energy.
228
229\subsection{Calculation of the fragment excitation energies.} 
230
231\hspace{1.0em}The temparature $T_b$ determines the average excitation
232energy of each fragment:
233\begin{equation}
234\label{MFS23} U_{f}(T_b) = E_f(T_b) - E_f(0) =  \frac{T_b^2}{\epsilon_0}A_f +
235[\beta(T_b) - T_b \frac{d\beta(T_b)}{dT_b} - \beta_0]A^{2/3}_f, 
236\end{equation} 
237where $E_f(T_b)$ is the average fragment energy at given temperature
238$T_b$ and $\beta(T_b)$ is defined in Eq. ($\ref{MFS8}$).  There is no
239excitation for fragment with $A_f < 4$, for $^{4}He$ excitation energy
240was taken as $U_{^{4}He} = 4T^2_b/\epsilon_o$.
241
Note: See TracBrowser for help on using the repository browser.