| 1 |
|
|---|
| 2 | \section{Gflash Shower Parameterizations}
|
|---|
| 3 |
|
|---|
| 4 | The computing time needed for the simulation of high energy electromagnetic
|
|---|
| 5 | showers can become very large, since it increases approximately linearly with the
|
|---|
| 6 | energy absorbed in the detector. Using parameterizations instead of
|
|---|
| 7 | individual particle tracking for electromagnetic (sub)showers can speed up
|
|---|
| 8 | the simulations considerably without sacrificing much precision. The Gflash
|
|---|
| 9 | package allows the parameterization of electron and positron showers in
|
|---|
| 10 | homogeneous (for the time being) calorimeters and is based on the
|
|---|
| 11 | parameterization described in Ref. \cite{para.grind} .
|
|---|
| 12 |
|
|---|
| 13 | \subsection{Parameterization Ansatz}
|
|---|
| 14 | The spatial energy distribution of electromagnetic showers is given by
|
|---|
| 15 | three probability density functions (pdf),
|
|---|
| 16 | \begin{equation}
|
|---|
| 17 | dE (\vec{r}) \, = \, E\, f(t)dt\, f(r)dr\, f(\phi) d\phi ,
|
|---|
| 18 | \end{equation}
|
|---|
| 19 | describing the longitudinal, radial, and azimuthal energy distributions.
|
|---|
| 20 | Here $t$ denotes the longitudinal shower depth in units of radiation length,
|
|---|
| 21 | $r$ measures the radial distance from the shower axis in Moli\`{e}re units,
|
|---|
| 22 | and $\phi$ is the azimuthal angle. The start of the shower is defined by the
|
|---|
| 23 | space point where the electron or positron enters the calorimeter, which
|
|---|
| 24 | is different from the original Gflash.
|
|---|
| 25 | A gamma distribution is used for the parameterization of the longitudinal
|
|---|
| 26 | shower profile, $f(t)$. The radial distribution $f(r)$, is described by a
|
|---|
| 27 | two-component ansatz. In $\phi$, it is assumed that the energy is distributed
|
|---|
| 28 | uniformly: $ f(\phi) = 1/2\pi $.
|
|---|
| 29 |
|
|---|
| 30 | \subsection{Longitudinal Shower Profiles }
|
|---|
| 31 | \label{sec_hom_long}
|
|---|
| 32 | The average longitudinal shower profiles can be described by a gamma
|
|---|
| 33 | dis\-tri\-bution \cite{para.longo}:
|
|---|
| 34 | \begin{equation}
|
|---|
| 35 | \left\langle \frac{1}{E} \frac{dE(t)}{dt} \right\rangle
|
|---|
| 36 | \, = \, f(t) \, = \,
|
|---|
| 37 | \frac{ (\beta t)^{\alpha -1} \beta \exp(-\beta t) }
|
|---|
| 38 | { \Gamma(\alpha) }.
|
|---|
| 39 | \end{equation}
|
|---|
| 40 |
|
|---|
| 41 | The center of gravity, $\langle t \rangle$, and the depth of the maximum,
|
|---|
| 42 | $T$, are calculated from the shape parameter $\alpha$ and the scaling
|
|---|
| 43 | parameter $\beta$ according~to:
|
|---|
| 44 | \begin{eqnarray}
|
|---|
| 45 | \langle t \rangle & = & \frac{\alpha}{\beta}\\
|
|---|
| 46 | T & = & \frac{\alpha-1}{\beta}.
|
|---|
| 47 | \label{talp}
|
|---|
| 48 | \end{eqnarray}
|
|---|
| 49 |
|
|---|
| 50 | In the parameterization all lengths are measured in units of radiation length
|
|---|
| 51 | $(X_0)$, and energies in units of the critical energy
|
|---|
| 52 | ($E_c= 2.66 \left( X_0 \frac{Z}{A} \right)^{1.1}$~).
|
|---|
| 53 | This allows material independence, since the longitudinal shower moments are
|
|---|
| 54 | equal in different materials, according to Ref. \cite{para.rossi}.
|
|---|
| 55 | The following equations are used for the energy dependence of $T_{hom}$ and
|
|---|
| 56 | $(\alpha_{hom})$,
|
|---|
| 57 | with $y = E/E_c$ and $t=x/X_0$, x being the longitudinal shower depth:
|
|---|
| 58 | \begin{eqnarray}
|
|---|
| 59 | \label{e_thom}
|
|---|
| 60 | T_{hom} & = & \ln y + t_1 \\
|
|---|
| 61 | \label{e_ahom}
|
|---|
| 62 | \alpha_{hom} & = & a_1 + (a_2 + a_3/Z) \ln y.
|
|---|
| 63 | \end{eqnarray}
|
|---|
| 64 |
|
|---|
| 65 | The $y$-dependence of the fluctuations can be described by:
|
|---|
| 66 | \begin{equation}
|
|---|
| 67 | \sigma \, = \, ( s_1 + s_2 \ln y )^{-1} .
|
|---|
| 68 | \label{lsighom}
|
|---|
| 69 | \end{equation}
|
|---|
| 70 |
|
|---|
| 71 | The correlation between $\ln T_{hom} $ and $\ln \alpha_{hom} $
|
|---|
| 72 | is given by:
|
|---|
| 73 | \begin{equation}
|
|---|
| 74 | \rho(\ln T_{hom}, \ln \alpha_{hom}) \, \equiv \, \rho
|
|---|
| 75 | \, = \, r_1 + r_2 \ln y .
|
|---|
| 76 | \label{corrhom}
|
|---|
| 77 | \end{equation}
|
|---|
| 78 | From these formulae, correlated and varying parameters $\alpha_i$ and
|
|---|
| 79 | $\beta_i$ are generated according to
|
|---|
| 80 | \begin{equation}
|
|---|
| 81 | \left(
|
|---|
| 82 | \begin{array}{c}
|
|---|
| 83 | \ln T_i \\
|
|---|
| 84 | \ln \alpha_i
|
|---|
| 85 | \end{array} \right)
|
|---|
| 86 | \, = \,
|
|---|
| 87 | \left(
|
|---|
| 88 | \begin{array}{c}
|
|---|
| 89 | \langle \ln T \rangle \\
|
|---|
| 90 | \langle \ln \alpha \rangle
|
|---|
| 91 | \end{array} \right)
|
|---|
| 92 | + C
|
|---|
| 93 | \left(
|
|---|
| 94 | \begin{array}{c}
|
|---|
| 95 | z_1 \\
|
|---|
| 96 | z_2
|
|---|
| 97 | \end{array} \right)
|
|---|
| 98 | \end{equation}
|
|---|
| 99 | with
|
|---|
| 100 | $$
|
|---|
| 101 | C \, = \,
|
|---|
| 102 | \left(
|
|---|
| 103 | \begin{array}{cc}
|
|---|
| 104 | \sigma (\ln T) & 0 \\
|
|---|
| 105 | 0 & \sigma (\ln \alpha)
|
|---|
| 106 | \end{array} \right)
|
|---|
| 107 | \left(
|
|---|
| 108 | \begin{array}{cc}
|
|---|
| 109 | \sqrt{\frac{1+\rho}{2}} & \sqrt{\frac{1-\rho}{2}} \\
|
|---|
| 110 | \sqrt{\frac{1+\rho}{2}} & - \sqrt{\frac{1-\rho}{2}}
|
|---|
| 111 | \end{array} \right) \, $$
|
|---|
| 112 | $ \sigma (\ln \alpha)$ and $\sigma (\ln T)$ are the fluctuations of $T_{hom}$
|
|---|
| 113 | and $(\alpha_{hom}$.
|
|---|
| 114 | The values of the coefficients can be found in Ref. \cite{para.grind}.
|
|---|
| 115 |
|
|---|
| 116 |
|
|---|
| 117 | \subsection{Radial Shower Profiles}
|
|---|
| 118 | \label{sec_hom_rad}
|
|---|
| 119 |
|
|---|
| 120 | For the description of average radial energy profiles,
|
|---|
| 121 | \begin{equation}
|
|---|
| 122 | f(r) \, = \, \frac{1}{dE(t)} \frac{dE(t,r)}{dr},
|
|---|
| 123 | \end{equation}
|
|---|
| 124 | a variety of different functions can be found in the literature.
|
|---|
| 125 | In Gflash the following two-component ansatz, an extension of that in
|
|---|
| 126 | Ref.\cite{para.nim90}, was used:
|
|---|
| 127 | \begin{eqnarray}
|
|---|
| 128 | \label{frad}
|
|---|
| 129 | f(r) & = & p f_C(r) + (1-p) f_T(r) \\
|
|---|
| 130 | & = &
|
|---|
| 131 | p \frac{2 r R_C^2}{(r^2 + R_C^2)^2}
|
|---|
| 132 | + (1-p) \frac{2 r R_T^2}{(r^2 + R_T^2)^2}
|
|---|
| 133 | \nonumber
|
|---|
| 134 | \end{eqnarray}
|
|---|
| 135 |
|
|---|
| 136 | with $$ 0 \leq p \leq 1 . $$
|
|---|
| 137 | Here $R_C$ ($R_T$) is the median of the core (tail) component and $p$
|
|---|
| 138 | is a probability giving the relative weight of the core component.
|
|---|
| 139 | The variable $\tau = t/T$, which measures the shower depth in
|
|---|
| 140 | units of the depth of the shower maximum, is used in order to generalize
|
|---|
| 141 | the radial profiles. This makes the parameterization more convenient and
|
|---|
| 142 | separates the energy and material dependence of various parameters.
|
|---|
| 143 | The median of the core distribution, $R_C$, increases linearly with $\tau$.
|
|---|
| 144 | The weight of the core, $p$, is maximal around the shower maximum, and the
|
|---|
| 145 | width of the tail, $R_T$, is minimal at $\tau \approx 1$.
|
|---|
| 146 |
|
|---|
| 147 | The following formulae are used to parameterize the radial energy density
|
|---|
| 148 | distribution for a given energy and material:
|
|---|
| 149 | \begin{eqnarray}
|
|---|
| 150 | \label{rz}
|
|---|
| 151 | R_{C,hom}(\tau) & = &
|
|---|
| 152 | z_1 + z_2 \tau \\
|
|---|
| 153 | \label{rk}
|
|---|
| 154 | R_{T,hom}(\tau) & = &
|
|---|
| 155 | k_1 \{ \exp (k_3(\tau -k_2)) + \exp (k_4(\tau -k_2)) \} \\
|
|---|
| 156 | \label{p}
|
|---|
| 157 | p_{hom}(\tau) & = &
|
|---|
| 158 | p_1 \exp \left\{ \frac{p_2-\tau}{p_3} -
|
|---|
| 159 | \exp \left( \frac{p_2-\tau}{p_3} \right) \right\}
|
|---|
| 160 | \end{eqnarray}
|
|---|
| 161 | The parameters $z_1 \cdots p_3$ are either constant or simple
|
|---|
| 162 | functions of $\ln E$ or $Z$.
|
|---|
| 163 |
|
|---|
| 164 | Radial shape fluctuations are also taken into account. A detailed
|
|---|
| 165 | explanation of this procedure, as well as a list of all the parameters used
|
|---|
| 166 | in Gflash, can be found in Ref. \cite{para.grind}.
|
|---|
| 167 |
|
|---|
| 168 | \subsection{Gflash Performance}
|
|---|
| 169 |
|
|---|
| 170 | The parameters used in this Gflash implementation were extracted from full
|
|---|
| 171 | simulation studies with Geant 3. They also give good results inside the
|
|---|
| 172 | Geant4 fast shower framework when compared with the full electromagnetic
|
|---|
| 173 | shower simulation. However, if more precision or higher particle energies
|
|---|
| 174 | are required, retuning may be necessary.
|
|---|
| 175 | For the longitudinal profiles the difference between full simulation
|
|---|
| 176 | and Gflash parameterization is at the level of a few percent.
|
|---|
| 177 | Because the radial profiles are slightly broader in Geant3 than in Geant4,
|
|---|
| 178 | the differences may reach $ > 10 \% $.
|
|---|
| 179 | The gain in speed, on the other hand, is impressive. The simulation of a
|
|---|
| 180 | 1~TeV electron in a $PbWO_4$ cube is 160 times faster with Gflash.
|
|---|
| 181 | Gflash can also be used to parameterize electromagnetic showers in sampling
|
|---|
| 182 | calorimeters. So far, however, only homogeneous materials are supported.
|
|---|
| 183 |
|
|---|
| 184 |
|
|---|
| 185 | \subsection{Status of this document}
|
|---|
| 186 | 02.12.04 created by J.Weng \\
|
|---|
| 187 | 03.12.04 grammar check and minor re-wording by D.H. Wright \\
|
|---|
| 188 |
|
|---|
| 189 |
|
|---|
| 190 | \begin{latexonly}
|
|---|
| 191 |
|
|---|
| 192 | \begin{thebibliography}{99}
|
|---|
| 193 |
|
|---|
| 194 | \bibitem{para.grind} G.~Grindhammer, S.~Peters,
|
|---|
| 195 | {\em The Parameterized Simulation of Electromagnetic Showers in
|
|---|
| 196 | Homogeneous and Sampling Calorimeters, hep-ex/0001020 } (1993).
|
|---|
| 197 |
|
|---|
| 198 | \bibitem {para.longo} E.~Longo and I.~Sestili,{\em
|
|---|
| 199 | Nucl.~Instrum.~Meth.~128, 283} (1975).
|
|---|
| 200 |
|
|---|
| 201 | \bibitem{para.rossi} ~Rossi {\em
|
|---|
| 202 | rentice Hall, New York} (1952).
|
|---|
| 203 |
|
|---|
| 204 | \bibitem{para.nim90} G.~Grindhammer, M.~Rudowicz, and
|
|---|
| 205 | S.~Peters, {\em Nucl.~Instrum.~Meth.~A290, 469} (1990).
|
|---|
| 206 |
|
|---|
| 207 | \end{thebibliography}
|
|---|
| 208 |
|
|---|
| 209 | \end{latexonly}
|
|---|
| 210 |
|
|---|
| 211 | \begin{htmlonly}
|
|---|
| 212 |
|
|---|
| 213 | \subsection{Bibliography}
|
|---|
| 214 |
|
|---|
| 215 | \begin{enumerate}
|
|---|
| 216 | \item G.~Grindhammer, S.~Peters,
|
|---|
| 217 | {\em The Parameterized Simulation of Electromagnetic Showers in
|
|---|
| 218 | Homogeneous and Sampling Calorimeters, hep-ex/0001020 } (1993).
|
|---|
| 219 |
|
|---|
| 220 | \item E.~Longo and I.~Sestili,{\em
|
|---|
| 221 | Nucl.~Instrum.~Meth.~128, 283} (1975).
|
|---|
| 222 |
|
|---|
| 223 | \item ~Rossi {\em Prentice Hall, New York} (1952).
|
|---|
| 224 |
|
|---|
| 225 | \item G.~Grindhammer, M.~Rudowicz, and
|
|---|
| 226 | S.~Peters, {\em Nucl.~Instrum.~Meth.~A290, 469} (1990).
|
|---|
| 227 |
|
|---|
| 228 | \end{enumerate}
|
|---|
| 229 |
|
|---|
| 230 | \end{htmlonly}
|
|---|
| 231 |
|
|---|