source: trunk/documents/UserDoc/UsersGuides/PhysicsReferenceManual/latex/photolepton_hadron/photolepton_hadron.tex @ 1208

Last change on this file since 1208 was 1208, checked in by garnier, 15 years ago

CVS update

File size: 3.8 KB
Line 
1\chapter{Lepton Hadron Interactions}
2
3The photonuclear interaction of muons is currently the only process treated
4in this category.
5
6\section{\it G4MuonNucleusProcess}
7
8This class simulates the photonuclear interaction of muons in a material.
9The muon interacts electromagnetically with a nucleus, exchanging a virtual
10photon.  At energies above a few GeV, the photon interacts hadronically with
11the nucleus, producing hadronic secondaries. 
12
13The outcome of the simulation depends heavily upon the interaction model
14chosen.  Hence the model-dependent part of the process is implemented in
15the {\it G4MuonNucleusInteractionModel} class, which can be easily replaced by
16another model.
17
18{\it G4MuonNucleusInteractionModel} calculates the cross section and final
19states of the muon and hadronic secondaries.  The final muon momentum is
20given by a double-differential cross section which depends on the
21photoabsorption cross sections for longitudinally and transversely polarized
22photons.  The final hadronic state is determined by replacing the virtual
23photon with a charged pion of the same $Q^2$ and then allowing the pion to
24interact with the nucleus.  The charge of the pion is chosen at random.  The
25pion interactions with the nucleus are modeled by processes derived from the
26GHEISHA \cite{GHEISHA} package.  These processes are: \\
27
28\begin{tabular}[t]{ll}
29{\it G4LEPionPlusInelastic}, {\it G4LEPionMinusInelastic} & $E \leq 25$ GeV \\
30{\it G4HEPionPlusInelastic}, {\it G4HEPionMinusInelastic} & $E > 25$ GeV \\
31\end{tabular}
32\\
33
34\subsection{Cross Section Calculation}
35
36The cross section for the above process in a material is given roughly by
37
38\begin{eqnarray*}
39\sigma_{\mu A} = A \sigma_{\mu N}
40\end{eqnarray*}
41
42\noindent where $A$ is the atomic mass number of the material and
43$\sigma_{\mu N}$ is the cross section for the process on a single nucleon:
44
45\[
46  \sigma_{\mu N} =
47    \left\{ \begin{array}{ll}
48      0.3               & (E \leq 30GeV) \\
49      0.3 (E/30)^{0.25} & (E > 30GeV) \\
50    \end{array} \right. [\mu b] .
51\]
52
53\noindent
54The differential cross section, in terms of muon energy $E$ and emission solid
55angle $\Omega$, can be expressed as:
56
57\begin{eqnarray*}
58  \frac{d\sigma}{d\Omega dE} =\Gamma\,(\sigma_T + \epsilon \sigma_L)
59\end{eqnarray*}
60where $\sigma_L$ and $\sigma_T$ are the photoabsorption cross sections for
61longitudinal and transverse photons, respectively.  $\Gamma$ is the transverse
62photon flux and $\epsilon$ is the polarization of the intermediate photon.
63The photoabsorption cross sections are parameterized as:
64\begin{eqnarray*}
65  \sigma_L &=& 0.3\,\left( 1 - \frac{1}{1.868} Q^2 \nu \right)\,\sigma_T \\
66  \sigma_T &\sim& const = 0.12 mb \\
67\end{eqnarray*}
68
69\noindent while the flux and polarization are given by
70\begin{eqnarray*}
71  \Gamma   &=& \frac{K \alpha}{2\pi} \frac{E^\prime}{E} \frac{1}{1-\epsilon} \\
72  \epsilon &=& \left[ 1 + 2 \frac{Q^2 + \nu^2}{Q^2} tan^2 \frac{\theta}{2} \right]^{-1} . \\
73\end{eqnarray*}
74
75\noindent
76$E$ and $E^{\prime}$ are the initial and final muon energies, $Q^2$ and $\nu$ 
77are the scaling variables
78\begin{eqnarray*}
79  Q^2   &=& -q^2 = 2 (EE^{\prime} - PP^{\prime} cos \theta - m_\mu^2) \\
80  \nu   &=& E - E^{\prime} , \\
81\end{eqnarray*}
82and $K$ is given using the Gilman convention
83\begin{eqnarray*}
84  K = \nu + \frac{Q^2}{2\nu} .
85\end{eqnarray*}
86
87
88\section{Status of this document}
89 20.04.02  re-written by D.H. Wright \\
90 23.10.98  created by M.Takahata \\
91
92\begin{latexonly}
93
94\begin{thebibliography}{99}
95\bibitem{GHEISHA} H.Fesefeldt
96   {\em GHEISHA The Simulation of Hadronic Showers} 149
97   {\em RWTH/PITHA 85/02} (1985)
98\end{thebibliography}
99
100\end{latexonly}
101
102\begin{htmlonly}
103
104\section{Bibliography}
105
106\begin{enumerate}
107\item H.Fesefeldt
108   {\em GHEISHA The Simulation of Hadronic Showers} 149
109   {\em RWTH/PITHA 85/02} (1985)
110\end{enumerate}
111
112\end{htmlonly}
113
Note: See TracBrowser for help on using the repository browser.