| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | // Rich advanced example for Geant4
|
|---|
| 27 | // PadHpdPhotoElectricEffect.cc for Rich of LHCb
|
|---|
| 28 | // History:
|
|---|
| 29 | // Created: Sajan Easo (Sajan.Easo@cern.ch)
|
|---|
| 30 | // Revision: Patricia Mendez (Patricia.Mendez@cern.ch)
|
|---|
| 31 | /////////////////////////////////////////////////////////////////////////////
|
|---|
| 32 | #include "globals.hh"
|
|---|
| 33 | #include <cmath>
|
|---|
| 34 |
|
|---|
| 35 | #include "PadHpdPhotoElectricEffect.hh"
|
|---|
| 36 | #include "RichTbGeometryParameters.hh"
|
|---|
| 37 | #include "G4TransportationManager.hh"
|
|---|
| 38 | #include "G4TouchableHandle.hh"
|
|---|
| 39 | #include "G4GeometryTolerance.hh"
|
|---|
| 40 | #include "Randomize.hh"
|
|---|
| 41 | #include "RichTbAnalysisManager.hh"
|
|---|
| 42 | #include "RichTbRunConfig.hh"
|
|---|
| 43 | #include "RichTbMaterialParameters.hh"
|
|---|
| 44 |
|
|---|
| 45 | #include "RichTbAnalysisManager.hh"
|
|---|
| 46 |
|
|---|
| 47 | PadHpdPhotoElectricEffect::PadHpdPhotoElectricEffect(const G4String& processName ,
|
|---|
| 48 | RichTbRunConfig* RConfig)
|
|---|
| 49 | :G4VDiscreteProcess(processName),
|
|---|
| 50 | DemagnificationFactor(std::vector<G4double>(NumHpdTot)),
|
|---|
| 51 | DemagnificationQuadFactor(std::vector<G4double>(NumHpdTot)),
|
|---|
| 52 | HpdQE(NumHpdTot, std::vector<G4double>( NumQEbins)),
|
|---|
| 53 | HpdWabin(NumHpdTot, std::vector<G4double>( NumQEbins))
|
|---|
| 54 | {
|
|---|
| 55 | rConfig=RConfig;
|
|---|
| 56 | PrePhotoElectricVolName="PadHpdWindowQuartz";
|
|---|
| 57 | PostPhotoElectricVolName="BiAlkaliPhCathode";
|
|---|
| 58 | HpdPhElectronKE=(RConfig-> getHpdPhElectronEnergy())*keV;
|
|---|
| 59 | PhCathodeToSilDetDist= HpdPhotoCathodeSiZdist;
|
|---|
| 60 | PSFsigma=PadHpdPSFsigma;
|
|---|
| 61 |
|
|---|
| 62 | for(G4int ihpdq=0; ihpdq<NumHpdTot; ihpdq++ ) {
|
|---|
| 63 |
|
|---|
| 64 | if( HpdDemagLinearTerm[ihpdq] != 0.0 ) {
|
|---|
| 65 | DemagnificationFactor[ihpdq]=1.0 / HpdDemagLinearTerm[ihpdq];
|
|---|
| 66 | }else { DemagnificationFactor[ihpdq] =1.0 / 2.3;}
|
|---|
| 67 |
|
|---|
| 68 | if( HpdDemagQuadraticTerm[ihpdq] != 0.0 ) {
|
|---|
| 69 |
|
|---|
| 70 | DemagnificationQuadFactor[ihpdq]=1.0 / HpdDemagQuadraticTerm[ihpdq];
|
|---|
| 71 |
|
|---|
| 72 | }else{DemagnificationQuadFactor[ihpdq]=0.0*(1.0/(1.0*mm)); }
|
|---|
| 73 |
|
|---|
| 74 |
|
|---|
| 75 | // Now to apply the error on the HPD demag factor. SE 28-4-02
|
|---|
| 76 | // for now a flat error is applied. the uniform number from -1.0 to
|
|---|
| 77 | // 1.0 is obtained and then multiplied with the factor.
|
|---|
| 78 |
|
|---|
| 79 | G4double DemagError= (HpdDemagErrorPercent/100.0)*(2.0*G4UniformRand()-1.0) ;
|
|---|
| 80 |
|
|---|
| 81 | DemagnificationFactor[ihpdq] = DemagnificationFactor[ihpdq]*(1.0+DemagError);
|
|---|
| 82 |
|
|---|
| 83 |
|
|---|
| 84 | std::vector<G4double>qeCurHpd = InitializeHpdQE(ihpdq);
|
|---|
| 85 | std::vector<G4double>waCurHpd = InitializeHpdWaveL(ihpdq);
|
|---|
| 86 | if(qeCurHpd.size() != waCurHpd.size() ) {
|
|---|
| 87 | G4cout<<"Wrong size for Hpd QE "<<ihpdq<<" "<<qeCurHpd.size()
|
|---|
| 88 | <<" "<< waCurHpd.size()<<G4endl;
|
|---|
| 89 | }
|
|---|
| 90 | for(size_t iqbin=0; iqbin < qeCurHpd.size(); iqbin++){
|
|---|
| 91 | HpdQE[ihpdq][iqbin]=qeCurHpd[iqbin]/100;
|
|---|
| 92 | HpdWabin[ihpdq][iqbin]=waCurHpd[iqbin];
|
|---|
| 93 | }
|
|---|
| 94 | }
|
|---|
| 95 | G4cout<<GetProcessName() <<" is created "<<G4endl;
|
|---|
| 96 |
|
|---|
| 97 |
|
|---|
| 98 | }
|
|---|
| 99 | PadHpdPhotoElectricEffect::~PadHpdPhotoElectricEffect() {; }
|
|---|
| 100 |
|
|---|
| 101 | G4bool PadHpdPhotoElectricEffect::IsApplicable(const G4ParticleDefinition&
|
|---|
| 102 | aParticleType)
|
|---|
| 103 | {
|
|---|
| 104 | return ( &aParticleType == G4OpticalPhoton::OpticalPhoton() );
|
|---|
| 105 | }
|
|---|
| 106 |
|
|---|
| 107 | G4double PadHpdPhotoElectricEffect::GetMeanFreePath(const G4Track& ,
|
|---|
| 108 | G4double ,
|
|---|
| 109 | G4ForceCondition* condition)
|
|---|
| 110 | {
|
|---|
| 111 | *condition = Forced;
|
|---|
| 112 |
|
|---|
| 113 | return DBL_MAX;
|
|---|
| 114 | }
|
|---|
| 115 |
|
|---|
| 116 | G4VParticleChange* PadHpdPhotoElectricEffect::PostStepDoIt(const G4Track& aTrack,
|
|---|
| 117 | const G4Step& aStep)
|
|---|
| 118 | {
|
|---|
| 119 |
|
|---|
| 120 | aParticleChange.Initialize(aTrack);
|
|---|
| 121 |
|
|---|
| 122 | G4StepPoint* pPreStepPoint = aStep.GetPreStepPoint();
|
|---|
| 123 | G4StepPoint* pPostStepPoint = aStep.GetPostStepPoint();
|
|---|
| 124 |
|
|---|
| 125 |
|
|---|
| 126 |
|
|---|
| 127 | if (pPostStepPoint->GetStepStatus() != fGeomBoundary){
|
|---|
| 128 |
|
|---|
| 129 | return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
|
|---|
| 130 |
|
|---|
| 131 | }
|
|---|
| 132 |
|
|---|
| 133 |
|
|---|
| 134 | G4String PrePhName = pPreStepPoint -> GetPhysicalVolume() ->
|
|---|
| 135 | GetLogicalVolume() -> GetMaterial()->GetName();
|
|---|
| 136 | G4String PostPhName= pPostStepPoint -> GetPhysicalVolume() ->
|
|---|
| 137 | GetLogicalVolume() -> GetMaterial() ->GetName();
|
|---|
| 138 |
|
|---|
| 139 |
|
|---|
| 140 | if(( PrePhName == PrePhotoElectricVolName &&
|
|---|
| 141 | PostPhName == PostPhotoElectricVolName) ||
|
|---|
| 142 | ( PostPhName == PrePhotoElectricVolName &&
|
|---|
| 143 | PrePhName == PostPhotoElectricVolName) ) {
|
|---|
| 144 |
|
|---|
| 145 |
|
|---|
| 146 | }else {
|
|---|
| 147 |
|
|---|
| 148 | return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
|
|---|
| 149 |
|
|---|
| 150 | }
|
|---|
| 151 |
|
|---|
| 152 | G4double kCarTolerance = G4GeometryTolerance::GetInstance()->GetSurfaceTolerance();
|
|---|
| 153 | if (aTrack.GetStepLength()<=kCarTolerance/2){
|
|---|
| 154 | return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
|
|---|
| 155 | }
|
|---|
| 156 |
|
|---|
| 157 | const G4DynamicParticle* aDynamicPhoton = aTrack.GetDynamicParticle();
|
|---|
| 158 | G4double PhotonEnergy = aDynamicPhoton->GetKineticEnergy();
|
|---|
| 159 |
|
|---|
| 160 | if(PhotonEnergy <= 0.0 ) {
|
|---|
| 161 |
|
|---|
| 162 | return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
|
|---|
| 163 | }
|
|---|
| 164 |
|
|---|
| 165 |
|
|---|
| 166 | //Now use the QE for the current HPD to determine if a
|
|---|
| 167 | // photoelectron should be produced or not.
|
|---|
| 168 |
|
|---|
| 169 | G4int currentHpdNumber= pPreStepPoint->GetTouchableHandle()
|
|---|
| 170 | -> GetReplicaNumber(1);
|
|---|
| 171 | if(currentHpdNumber >= NumHpdTot ){
|
|---|
| 172 |
|
|---|
| 173 | return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
|
|---|
| 174 |
|
|---|
| 175 | }
|
|---|
| 176 |
|
|---|
| 177 | G4double PhotWLength=PhotMomWaveConv/(PhotonEnergy/eV);
|
|---|
| 178 |
|
|---|
| 179 | G4double PhCathodeQE = getHpdQEff(currentHpdNumber, PhotWLength);
|
|---|
| 180 | G4double randomnum = G4UniformRand();
|
|---|
| 181 |
|
|---|
| 182 |
|
|---|
| 183 | //the following three lines are copied from few lines later just
|
|---|
| 184 | // for histogramming convenience.
|
|---|
| 185 | G4ThreeVector GlobalElectronOrigin= pPostStepPoint->GetPosition();
|
|---|
| 186 |
|
|---|
| 187 | G4Navigator* theNavigator =
|
|---|
| 188 | G4TransportationManager::GetTransportationManager()->
|
|---|
| 189 | GetNavigatorForTracking();
|
|---|
| 190 | G4ThreeVector LocalElectronOrigin = theNavigator->
|
|---|
| 191 | GetGlobalToLocalTransform().
|
|---|
| 192 | TransformPoint(GlobalElectronOrigin);
|
|---|
| 193 |
|
|---|
| 194 |
|
|---|
| 195 |
|
|---|
| 196 | // For the histogram of the radius of the cherenkov circle.
|
|---|
| 197 | // This assumes that the beam is along 001 axis in the global
|
|---|
| 198 | // coord system.
|
|---|
| 199 | G4double GLx=GlobalElectronOrigin.x();
|
|---|
| 200 | G4double GLy=GlobalElectronOrigin.y();
|
|---|
| 201 | // G4double PhotCkvRad = std::pow((std::pow(GLx,2)+std::pow(GLy,2)),0.5);
|
|---|
| 202 | G4double PhotCkvPhi = std::atan2(GLy,GLx)*180.0/pi;
|
|---|
| 203 |
|
|---|
| 204 | if( PhotCkvPhi < - 180.0 )PhotCkvPhi+= 360.0;
|
|---|
| 205 |
|
|---|
| 206 | if(randomnum < PhCathodeQE ) {
|
|---|
| 207 |
|
|---|
| 208 |
|
|---|
| 209 | G4double CurDemagFactor=DemagnificationFactor[currentHpdNumber];
|
|---|
| 210 | G4double CurDemagQuadFactor=DemagnificationQuadFactor[currentHpdNumber];
|
|---|
| 211 |
|
|---|
| 212 | // now get the Point Spread function.
|
|---|
| 213 |
|
|---|
| 214 | G4double PsfRandomAzimuth = twopi*G4UniformRand();
|
|---|
| 215 | G4double PsfRandomRad= G4RandGauss::shoot(0.0,PSFsigma);
|
|---|
| 216 | G4double PsfX= PsfRandomRad*std::cos( PsfRandomAzimuth);
|
|---|
| 217 | G4double PsfY= PsfRandomRad*std::sin( PsfRandomAzimuth);
|
|---|
| 218 |
|
|---|
| 219 |
|
|---|
| 220 | G4ThreeVector LocalElectronDirection(
|
|---|
| 221 | (CurDemagFactor+CurDemagQuadFactor*LocalElectronOrigin.x()-1.0)*LocalElectronOrigin.x()+PsfX,
|
|---|
| 222 | (CurDemagFactor+CurDemagQuadFactor*LocalElectronOrigin.y()-1.0)*LocalElectronOrigin.y()+PsfY,
|
|---|
| 223 | -(PhCathodeToSilDetDist-
|
|---|
| 224 | (HpdPhCathodeRInner-LocalElectronOrigin.z())));
|
|---|
| 225 | //normalize this vector and then transform back to global coord system.
|
|---|
| 226 | LocalElectronDirection = LocalElectronDirection.unit();
|
|---|
| 227 |
|
|---|
| 228 | const G4ThreeVector GlobalElectronDirection = theNavigator->
|
|---|
| 229 | GetLocalToGlobalTransform().
|
|---|
| 230 | TransformAxis(LocalElectronDirection);
|
|---|
| 231 |
|
|---|
| 232 | G4double ElecKineEnergy=getHpdPhElectronKE();
|
|---|
| 233 |
|
|---|
| 234 | //create the electron
|
|---|
| 235 | G4DynamicParticle* aElectron= new G4DynamicParticle (G4Electron::Electron(),
|
|---|
| 236 | GlobalElectronDirection, ElecKineEnergy) ;
|
|---|
| 237 |
|
|---|
| 238 | aParticleChange.SetNumberOfSecondaries(1) ;
|
|---|
| 239 | // aParticleChange.AddSecondary( aElectron ) ;
|
|---|
| 240 | aParticleChange.AddSecondary( aElectron,GlobalElectronOrigin,true ) ;
|
|---|
| 241 |
|
|---|
| 242 |
|
|---|
| 243 | // Kill the incident photon when it has converted to photoelectron.
|
|---|
| 244 |
|
|---|
| 245 | aParticleChange.ProposeLocalEnergyDeposit(PhotonEnergy);
|
|---|
| 246 | aParticleChange.ProposeEnergy(0.);
|
|---|
| 247 | aParticleChange.ProposeTrackStatus(fStopAndKill);
|
|---|
| 248 | }
|
|---|
| 249 | //photon is not killed if it is not converted to photoelectron
|
|---|
| 250 | //SE 26-09-01.
|
|---|
| 251 | return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
|
|---|
| 252 |
|
|---|
| 253 | }
|
|---|
| 254 |
|
|---|
| 255 | G4double PadHpdPhotoElectricEffect::getHpdQEff(G4int HpdNum,
|
|---|
| 256 | G4double PhotonWLength){
|
|---|
| 257 |
|
|---|
| 258 | G4double hq1,hq2, wa1, wa2,aslope,aintc;
|
|---|
| 259 | G4double qeff=0.0;
|
|---|
| 260 | for (G4int ibinq=0 ; ibinq<NumQEbins-1 ; ibinq++ ){
|
|---|
| 261 | wa1 = HpdWabin[HpdNum][ibinq];
|
|---|
| 262 | wa2 = HpdWabin[HpdNum][ibinq+1];
|
|---|
| 263 | if( PhotonWLength >= wa1 && PhotonWLength <= wa2 ) {
|
|---|
| 264 | hq1 = HpdQE[HpdNum][ibinq];
|
|---|
| 265 | hq2 = HpdQE[HpdNum][ibinq+1];
|
|---|
| 266 | aslope = (hq2-hq1)/(wa2-wa1);
|
|---|
| 267 | aintc = hq1 - (aslope * wa1 );
|
|---|
| 268 | qeff= aintc + aslope * PhotonWLength ;
|
|---|
| 269 | return qeff;
|
|---|
| 270 | }
|
|---|
| 271 |
|
|---|
| 272 | }
|
|---|
| 273 | return qeff;
|
|---|
| 274 | }
|
|---|
| 275 |
|
|---|
| 276 |
|
|---|
| 277 |
|
|---|
| 278 |
|
|---|