// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id: FCALSteppingAction.cc,v 1.7 2006/06/29 16:03:15 gunter Exp $ // GEANT4 tag $Name: geant4-09-03-cand-01 $ // // //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... #include "FCALSteppingAction.hh" #include "G4SteppingManager.hh" #include "G4Track.hh" #include "G4DynamicParticle.hh" #include "G4Material.hh" #include "G4LogicalVolume.hh" #include "G4VPhysicalVolume.hh" #include "G4VTouchable.hh" #include "G4TouchableHistory.hh" #include "G4Event.hh" #include "G4ThreeVector.hh" #include "G4ios.hh" #include #include "globals.hh" //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... FCALSteppingAction::FCALSteppingAction():IDold(-1),IDout(-1) {;} //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... FCALSteppingAction::~FCALSteppingAction() {;} //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... void FCALSteppingAction::UserSteppingAction(const G4Step* astep) { // Get Edep G4double Edep = astep->GetTotalEnergyDeposit(); // Get Track G4Track* aTrack = astep->GetTrack(); // Get Touchable History G4TouchableHistory* theTouchable = (G4TouchableHistory*)(aTrack->GetTouchable()); // Energy deposit in FCAL1 and FCAL2 if(Edep != 0.) { G4VPhysicalVolume* physVol = theTouchable->GetVolume(); if(strcmp(physVol->GetName(),"FCALEmModulePhysical")== 0 || strcmp(physVol->GetName(),"F1LArGapPhysical") == 0) { EdepFCALEm = EdepFCALEm + Edep; }; if( (strcmp(physVol->GetName(), "FCALHadModulePhysical") == 0) || (strcmp(physVol->GetName(), "CuPlateAPhysical") == 0) || (strcmp(physVol->GetName(), "CuPlateBPhysical") == 0) || (strcmp(physVol->GetName(), "WAbsorberPhysical") == 0) || (strcmp(physVol->GetName(), "F2RodPhysical") == 0) || (strcmp(physVol->GetName(), "F2LArGapPhysical") == 0) ) { EdepFCALHad = EdepFCALHad + Edep; }; }; // Get Tracks properties G4int TrackID = aTrack->GetTrackID(); G4int ParentID = aTrack->GetParentID(); // Get Associated particle const G4DynamicParticle * aDynamicParticle = aTrack->GetDynamicParticle(); G4ParticleDefinition * aParticle = aTrack->GetDefinition(); G4String ParticleName = aParticle->GetParticleName(); IDnow = EventNo + 10000*TrackID+ 100000000*ParentID; if(IDnow != IDold) { IDold = IDnow; // Get the primary particle if(TrackID==1 && ParentID==0 && (aTrack->GetCurrentStepNumber()) == 1) { PrimaryVertex = aTrack->GetVertexPosition(); PrimaryDirection = aTrack->GetVertexMomentumDirection(); NSecondaries = 1; Secondaries[NSecondaries][1] = aParticle->GetPDGEncoding(); Secondaries[NSecondaries][2] = PrimaryVertex.x(); Secondaries[NSecondaries][3] = PrimaryVertex.y(); Secondaries[NSecondaries][4] = PrimaryVertex.z(); Secondaries[NSecondaries][5] = (aDynamicParticle->GetMomentum()).x(); Secondaries[NSecondaries][6] = (aDynamicParticle->GetMomentum()).y(); Secondaries[NSecondaries][7] = (aDynamicParticle->GetMomentum()).z(); Secondaries[NSecondaries][8] = aDynamicParticle->GetTotalMomentum(); Secondaries[NSecondaries][9] = aDynamicParticle->GetTotalEnergy(); Secondaries[NSecondaries][10] = aDynamicParticle->GetKineticEnergy(); G4cout << " **** Primary : " << EventNo << G4endl; G4cout << " Vertex : " << PrimaryVertex << G4endl; } // Get secondaries in air close to the primary tracks (DCA < 2.mm) G4double DCACut = 2.*mm; G4String Material = aTrack->GetMaterial()->GetName(); G4ThreeVector TrackPos = aTrack->GetVertexPosition(); if(TrackID != 1 && ParentID == 1 && (strcmp(Material,"Air")==0) && (TrackPos.z() > 135.*cm)) { SecondaryVertex = aTrack->GetVertexPosition(); SecondaryDirection = aTrack->GetVertexMomentumDirection(); // calculate DCA of secondries to primary particle Distance = PrimaryVertex - SecondaryVertex ; VectorProduct = PrimaryDirection.cross(SecondaryDirection); if(VectorProduct == 0. && PrimaryDirection != 0. && SecondaryDirection != 0.) { G4ThreeVector Temp = Distance.cross(PrimaryDirection); VectorProduct = Temp.cross(PrimaryDirection); }; VectorProductMagnitude = VectorProduct.mag(); if(VectorProductMagnitude == 0.) { VectorProductNorm = 0.; } else { VectorProductNorm = (1./VectorProduct.mag()) * VectorProduct ; }; DistOfClosestApproach = Distance * VectorProductNorm ; if(std::abs(DistOfClosestApproach) < DCACut) { NSecondaries++; Secondaries[0][0] = NSecondaries; Secondaries[NSecondaries][1] = aParticle->GetPDGEncoding(); Secondaries[NSecondaries][2] = (aTrack->GetVertexPosition()).x(); Secondaries[NSecondaries][3] = (aTrack->GetVertexPosition()).y(); Secondaries[NSecondaries][4] = (aTrack->GetVertexPosition()).z(); Secondaries[NSecondaries][5] =(aDynamicParticle->GetMomentum()).x(); Secondaries[NSecondaries][6] = (aDynamicParticle->GetMomentum()).y(); Secondaries[NSecondaries][7] = (aDynamicParticle->GetMomentum()).z(); Secondaries[NSecondaries][8] = aDynamicParticle->GetTotalMomentum(); Secondaries[NSecondaries][9] = aDynamicParticle->GetTotalEnergy(); Secondaries[NSecondaries][10] =aDynamicParticle->GetKineticEnergy(); }; }; }; // Get the World leaving particle if(aTrack->GetNextVolume() == 0) { if(IDnow != IDout) { IDout = IDnow; NTracks++; OutOfWorldTracksData[0][0] = NTracks; OutOfWorldTracksData[NTracks][1] = aParticle->GetPDGEncoding(); OutOfWorldTracksData[NTracks][2] = (aTrack->GetVertexPosition()).x(); OutOfWorldTracksData[NTracks][3] = (aTrack->GetVertexPosition()).y(); OutOfWorldTracksData[NTracks][4] = (aTrack->GetVertexPosition()).z(); OutOfWorldTracksData[NTracks][5] = (aDynamicParticle->GetMomentum()).x(); OutOfWorldTracksData[NTracks][6] = (aDynamicParticle->GetMomentum()).y(); OutOfWorldTracksData[NTracks][7] = (aDynamicParticle->GetMomentum()).z(); OutOfWorldTracksData[NTracks][8] = aDynamicParticle->GetTotalMomentum(); OutOfWorldTracksData[NTracks][9] = aDynamicParticle->GetTotalEnergy(); OutOfWorldTracksData[NTracks][10] = aDynamicParticle->GetKineticEnergy(); }; }; } void FCALSteppingAction::initialize(G4int Nev) { EventNo = Nev; NTracks = 0; NSecondaries = 0; EdepFCALEm = EdepFCALHad = 0.; for(G4int i=0; i<6000; i++) { for(G4int j=0; j<11; j++) { OutOfWorldTracksData[i][j] = 0.; Secondaries[i][j] = 0.; } }; } G4double FCALSteppingAction::GetOutOfWorldTracks(G4int i, G4int j){ return OutOfWorldTracksData[i][j]; } G4double FCALSteppingAction::GetSecondaries(G4int i, G4int j){ return Secondaries[i][j]; } G4double FCALSteppingAction::GetEdepFCAL(G4String FCAL) { if(strcmp(FCAL,"FCALEm") == 0) { return EdepFCALEm; } else { if(strcmp(FCAL,"FCALHad") == 0) { return EdepFCALHad;} } return 0.0; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....