| [807] | 1 | $Id: README,v 1.6 2005/11/27 13:13:59 mpiergen Exp $
|
|---|
| 2 | -------------------------------------------------------------------
|
|---|
| 3 |
|
|---|
| 4 |
|
|---|
| 5 | =========================================================
|
|---|
| 6 | Geant4 - Medical Linac example
|
|---|
| 7 | =========================================================
|
|---|
| 8 |
|
|---|
| 9 | README
|
|---|
| 10 | ---------------------
|
|---|
| 11 |
|
|---|
| 12 |
|
|---|
| 13 | ------------------------------------------------------------------------
|
|---|
| 14 | ----> Introduction.
|
|---|
| 15 |
|
|---|
| 16 | Medical_Linac is an example of application of Geant4 in a medical physics
|
|---|
| 17 | envinronment. It simulates energy deposit in a Phantom filled with water
|
|---|
| 18 | for a typical linac used for intensity modulated radiation therapy.
|
|---|
| 19 | The experimental set-up is very similar to one used in clinical practice.
|
|---|
| 20 |
|
|---|
| 21 | ------------------------------------------------------------------------
|
|---|
| 22 | ----> 1.Experimental set-up.
|
|---|
| 23 |
|
|---|
| 24 | The elements simulated are:
|
|---|
| 25 |
|
|---|
| 26 | 1-The point source of electrons (the distribution of the electron energy
|
|---|
| 27 | and the electron radial intensity was assumed Gaussian in shape)
|
|---|
| 28 | (the beam is along the z axis)
|
|---|
| 29 | 2-The primary collimator
|
|---|
| 30 | 3-The target
|
|---|
| 31 | 4-The vacuum window
|
|---|
| 32 | 5-The flattening filter
|
|---|
| 33 | 6-The ion chamber
|
|---|
| 34 | 7-The mirror
|
|---|
| 35 | 8-The light field reticle
|
|---|
| 36 | 9-The secondary movable collimators (jaws)
|
|---|
| 37 | 10-The Multi Leaf Collimator
|
|---|
| 38 | 11-The phantom (filled with water)
|
|---|
| 39 |
|
|---|
| 40 | The objects (2) and (3) are in a box filled with vacuum.
|
|---|
| 41 | The world volume is filled with air.
|
|---|
| 42 | The distance between the upper surface of the target and the upper surface
|
|---|
| 43 | of the phantom (SSD) is 100 cm.
|
|---|
| 44 | The particles exiting from the target with an angle>25deg are killed.
|
|---|
| 45 |
|
|---|
| 46 | ------------------------------------------------------------------------
|
|---|
| 47 | ----> 2.Setting up the environment variables
|
|---|
| 48 |
|
|---|
| 49 | compiler = gcc-3.2.3
|
|---|
| 50 |
|
|---|
| 51 | setenv G4SYSTEM Linux-g++
|
|---|
| 52 |
|
|---|
| 53 | setenv G4INSTALL points to the installation directory of GEANT4;
|
|---|
| 54 |
|
|---|
| 55 | setenv G4LIB point to the compiled libraries of GEANT4;
|
|---|
| 56 |
|
|---|
| 57 | setenv G4WORKDIR points to the work directory;
|
|---|
| 58 |
|
|---|
| 59 | setenv CLHEP_BASE_DIR points to the installation directory of CHLEP;
|
|---|
| 60 |
|
|---|
| 61 | setenv G4LEDATA points to the low energy electromagnetic libraries - G4EMLOW2.3
|
|---|
| 62 |
|
|---|
| 63 | setup for analysis: AIDA 3.2.1, PI 1.3.3
|
|---|
| 64 |
|
|---|
| 65 | Users can download the analysis tools from:
|
|---|
| 66 |
|
|---|
| 67 | http://aida.freehep.org/
|
|---|
| 68 | http://www.cern.ch/PI
|
|---|
| 69 |
|
|---|
| 70 | #------------------------------------------
|
|---|
| 71 |
|
|---|
| 72 | - Setup for Visualization
|
|---|
| 73 |
|
|---|
| 74 | IMPORTANT: be sure that your Geant4 installation has been done
|
|---|
| 75 | with the proper visualization drivers; for details please see the
|
|---|
| 76 | file geant4/source/visualization/README.
|
|---|
| 77 |
|
|---|
| 78 | To use the visualization drivers set the following variables in
|
|---|
| 79 | your local environment:
|
|---|
| 80 |
|
|---|
| 81 | setenv G4VIS_USE_OPENGLX 1 # OpenGL visualization
|
|---|
| 82 | setenv G4VIS_USE_DAWNFILE 1 # DAWN file
|
|---|
| 83 | setenv G4VIS_USE_VRMLFILE 1 # VRML file
|
|---|
| 84 | setenv G4VRMLFILE_VIEWER vrmlview # If installed
|
|---|
| 85 |
|
|---|
| 86 | ------------------------------------------------------------------------
|
|---|
| 87 | ----> 3.How to run the example.
|
|---|
| 88 |
|
|---|
| 89 | - batch mode:
|
|---|
| 90 |
|
|---|
| 91 | OpenGL visualization:
|
|---|
| 92 | $G4WORDIR/bin/Linux-g++/MedLinac vis.mac
|
|---|
| 93 |
|
|---|
| 94 | or DAWN file:
|
|---|
| 95 | $G4WORDIR/bin/Linux-g++/MedLinac dawnvis.mac
|
|---|
| 96 |
|
|---|
| 97 | or VRML file:
|
|---|
| 98 | $G4WORDIR/bin/Linux-g++/MedLinac vrmlvis.mac
|
|---|
| 99 |
|
|---|
| 100 | or without visualization:
|
|---|
| 101 | $G4WORDIR/bin/Linux-g++/MedLinac macro.mac
|
|---|
| 102 |
|
|---|
| 103 | - Interative mode:
|
|---|
| 104 | 3) $G4WORDIR/bin/Linux-g++/MedLinac
|
|---|
| 105 |
|
|---|
| 106 | -->possible different configurations for interactive mode:
|
|---|
| 107 |
|
|---|
| 108 | The user can select the cut of the physics processes:
|
|---|
| 109 | /PhysicsList/cut 0.2 mm
|
|---|
| 110 |
|
|---|
| 111 | The user can select the dimension of the water phantom and the dimension of the phantom's voxels in the detector
|
|---|
| 112 | construction:
|
|---|
| 113 | /Phantom/dimension 15. cm
|
|---|
| 114 | /Phantom/Nvoxels 150/Phantom/maxStep 0.2 mm
|
|---|
| 115 |
|
|---|
| 116 | and in the definition of the sensitive detector:
|
|---|
| 117 | /PhantomSD/dimension 15. cm
|
|---|
| 118 | /PhantomSD/Nvoxels 150
|
|---|
| 119 |
|
|---|
| 120 | The user can select the max step defined in the detector construction:
|
|---|
| 121 | /Phantom/maxStep 0.2 mm
|
|---|
| 122 |
|
|---|
| 123 |
|
|---|
| 124 | The user can select the position of the secondary collimators (the jaws)
|
|---|
| 125 | to obtain the desired field at isocenter:
|
|---|
| 126 | idle>/Jaws/X1/DistanceFromAxis -20. cm
|
|---|
| 127 | idle>/Jaws/X2/DistanceFromAxis 20. cm
|
|---|
| 128 | idle>/Jaws/Y1/DistanceFromAxis -20. cm
|
|---|
| 129 | idle>/Jaws/Y2/DistanceFromAxis 20. cm
|
|---|
| 130 | idle>/Jaws/update
|
|---|
| 131 |
|
|---|
| 132 | The user can select the position of every single leaf of the Multi-Leaf Collimator, for example:
|
|---|
| 133 | Idle> /MLC/leaf_selection a1
|
|---|
| 134 | Idle> /MLC/position 0. cm
|
|---|
| 135 | Idle> /MLC/leaf_selection a2
|
|---|
| 136 | Idle> /MLC/position 0. cm
|
|---|
| 137 | ..
|
|---|
| 138 | ..
|
|---|
| 139 | ..
|
|---|
| 140 | Idle> /MLC/leaf_selection b39
|
|---|
| 141 | Idle> /MLC/position 0. cm
|
|---|
| 142 | Idle> /MLC/leaf_selection b40
|
|---|
| 143 | Idle> /MLC/position 0. cm
|
|---|
| 144 |
|
|---|
| 145 | The distance selected represent the distance between the leaf tip and the beam axis projected at isocenter.
|
|---|
| 146 |
|
|---|
| 147 |
|
|---|
| 148 |
|
|---|
| 149 | The user can select the mean energy ad the standard deviation of the electrons:
|
|---|
| 150 | idle>/energy 6.0 MeV
|
|---|
| 151 | idle>/sourceType 0.127 MeV
|
|---|
| 152 |
|
|---|
| 153 | idle>/run/beamOn [NumberOfEvents] ...and then
|
|---|
| 154 | idle>exit
|
|---|
| 155 |
|
|---|
| 156 | -----------------------------------------------------------------------
|
|---|
| 157 | ----> 4. The physics
|
|---|
| 158 |
|
|---|
| 159 | The electromagnetic physic uses the LowEnergy library,
|
|---|
| 160 | specifically provided from GEANT4 to treat low energy processes.
|
|---|
| 161 | The default cut in range value is 0.1 mm, a bigger cut is associated to the first collimator.
|
|---|
| 162 |
|
|---|
| 163 | ------------------------------------------------------------------------
|
|---|
| 164 | ----> 5. Simulation output
|
|---|
| 165 |
|
|---|
| 166 | The analysis part of Medical_Linac is based on the AIDA interfaces and their
|
|---|
| 167 | implementation in Anaphe
|
|---|
| 168 | The actual analysis produces some histograms; the histograms are saved at
|
|---|
| 169 | the end of the run in the file "medlinac.hbk".
|
|---|
| 170 |
|
|---|
| 171 | It contains:
|
|---|
| 172 | 1) 2Dhistogram with the distribution of energy in the phantom (plane xz)
|
|---|
| 173 | 2) 1Dhistogram with the primary particle energy
|
|---|
| 174 |
|
|---|
| 175 | 3) 2Dhistogram with the distribution of energy )at a depth in the phantom
|
|---|
| 176 | of 15 mm (ZThickness = 1. cm )
|
|---|
| 177 |
|
|---|
| 178 | 4) 1Dhistogram with the distribution of energy along the z axis
|
|---|
| 179 | (Y and X Thickness = 5. mm), from which the user can calculate the PDD
|
|---|
| 180 |
|
|---|
| 181 | 5) 1Dhistogram with the distribution of energy along the x axis
|
|---|
| 182 | (Y and Z Thickness = 5. mm) at a depth in the phantom of 15 mm,
|
|---|
| 183 | from which the user can calculate the flatness
|
|---|
| 184 |
|
|---|
| 185 | 6) 1Dhistogram with the distribution of energy along the x axis
|
|---|
| 186 | (Y and Z Thickness = 5. mm) at a depth in the phantom of 50 mm,
|
|---|
| 187 | from which the user can calculate the flatness
|
|---|
| 188 |
|
|---|
| 189 | 7) 1Dhistogram with the distribution of energy along the x axis
|
|---|
| 190 | (Y and Z Thickness = 5. mm) at a depth in the phantom of 100 mm,
|
|---|
| 191 | from which the user can calculate the flatness
|
|---|
| 192 |
|
|---|
| 193 | 8) 1Dhistogram with the distribution of energy along the x axis
|
|---|
| 194 | (Y and Z Thickness = 5. mm) at a depth in the phantom of 200 mm,
|
|---|
| 195 | from which the user can calculate the flatness
|
|---|
| 196 |
|
|---|
| 197 | Units: the energy deposit is in MeV;
|
|---|
| 198 | x, y, z in mm for histograms
|
|---|
| 199 |
|
|---|
| 200 | To fill histograms from (4) to (8) I suggest you to select NumberOfEvents>500000
|
|---|
| 201 |
|
|---|
| 202 | Please note that in a multiple run session, the last run always override the
|
|---|
| 203 | hbook file.
|
|---|
| 204 |
|
|---|
| 205 | To use analisys remember to set G4ANALYSIS_USE.
|
|---|
| 206 |
|
|---|
| 207 | --------------------------------------------------------------------------
|
|---|
| 208 |
|
|---|
| 209 | for comments, advices, doubts and questions: Michela.Piergentili@ge.infn.it
|
|---|
| 210 |
|
|---|
| 211 | last modified: Michela Piergentili 24/11/2005
|
|---|
| 212 |
|
|---|
| 213 |
|
|---|