| 1 | -------------------------------------------------------------------
|
|---|
| 2 | $Id: README,v 1.12 2010/10/07 14:03:11 sincerti Exp $
|
|---|
| 3 | -------------------------------------------------------------------
|
|---|
| 4 |
|
|---|
| 5 | =========================================================
|
|---|
| 6 | Geant4 - Microbeam example
|
|---|
| 7 | =========================================================
|
|---|
| 8 |
|
|---|
| 9 | README file
|
|---|
| 10 | ----------------------
|
|---|
| 11 |
|
|---|
| 12 | CORRESPONDING AUTHOR
|
|---|
| 13 |
|
|---|
| 14 | S. Incerti (a, *) et al.
|
|---|
| 15 | a. Centre d'Etudes Nucleaires de Bordeaux-Gradignan
|
|---|
| 16 | (CENBG), IN2P3 / CNRS / Bordeaux 1 University, 33175 Gradignan, France
|
|---|
| 17 | * e-mail:incerti@cenbg.in2p3.fr
|
|---|
| 18 |
|
|---|
| 19 | Last modified by S. Incerti, 07/10/2010
|
|---|
| 20 |
|
|---|
| 21 | ---->0. INTRODUCTION.
|
|---|
| 22 |
|
|---|
| 23 | The microbeam example simulates the cellular irradiation beam line
|
|---|
| 24 | installed on the AIFIRA electrostatic accelerator facility located at
|
|---|
| 25 | CENBG, Bordeaux-Gradignan, France. For more information on this facility,
|
|---|
| 26 | please visit :
|
|---|
| 27 | http://www.cenbg.in2p3.fr/
|
|---|
| 28 |
|
|---|
| 29 | An overall description of this example is also available in this directory:
|
|---|
| 30 | to access it, simply open the microbeam.htm file with your internet browser.
|
|---|
| 31 |
|
|---|
| 32 | ---->1. GEOMETRY SET-UP.
|
|---|
| 33 |
|
|---|
| 34 | The elements simulated are:
|
|---|
| 35 |
|
|---|
| 36 | 1. A switching dipole magnet with fringing field, to deflect the 3 MeV alpha
|
|---|
| 37 | beam generated by the electrostatic accelerator into the microbeam line,
|
|---|
| 38 | oriented at 10 degrees from the main beam direction;
|
|---|
| 39 |
|
|---|
| 40 | 2. A circular collimator object, defining the incident beam size at the
|
|---|
| 41 | microbeam line entrance;
|
|---|
| 42 |
|
|---|
| 43 | 3. A quadrupole based magnetic symmetric focusing system allowing equal
|
|---|
| 44 | transverse demagnifications of 10. Fringe fields are calculated from Enge's
|
|---|
| 45 | model.
|
|---|
| 46 |
|
|---|
| 47 | 4. A dedicated cellular irradiation chamber setup;
|
|---|
| 48 |
|
|---|
| 49 | 5. A set of horizontal and vertical electrostatic deflecting plates which can
|
|---|
| 50 | be turned on or off to deflect the beam on target;
|
|---|
| 51 |
|
|---|
| 52 | 6. A realistic human keratinocyte voxellized cell observed from confocal
|
|---|
| 53 | microscopy and taking into account realistic nucleus and cytoplasm chemical
|
|---|
| 54 | compositions
|
|---|
| 55 |
|
|---|
| 56 |
|
|---|
| 57 | ---->2. EXPERIMENTAL SET-UP.
|
|---|
| 58 |
|
|---|
| 59 | The beam is defined at the microbeam line entrance through a collimator
|
|---|
| 60 | 5 micrometer in diameter. The beam is then focused onto target using a
|
|---|
| 61 | quadruplet of quadrupoles in the so-called Dymnikov magnetic configuration.
|
|---|
| 62 | The beam is sent to the irradiation chamber where it travels through a
|
|---|
| 63 | isobutane gas detector for counting purpose before reaching the polypropylene
|
|---|
| 64 | culture foil of the target cell which is immersed in the growing medium and
|
|---|
| 65 | enclosed within a dish.
|
|---|
| 66 |
|
|---|
| 67 | A cell is placed on the polypropylene foil and is irradiated using the
|
|---|
| 68 | microbeam. The cell is represented through a 3D phantom (G4PVParameterization)
|
|---|
| 69 | obtained from confocal microscopy. In the provided example, the voxels sizes
|
|---|
| 70 | are : 359 nm (X) x 359 nm (Y) x 163 nm (Z)
|
|---|
| 71 |
|
|---|
| 72 | The primary particle beam parameters are generated from experimental
|
|---|
| 73 | measurements performed on the AIFIRA facility. Incident particle used for
|
|---|
| 74 | cellular irradiation are 3 MeV alpha particles.
|
|---|
| 75 |
|
|---|
| 76 | More details on the experimental setup and its simulation with Geant4 can
|
|---|
| 77 | be found in the following papers, which may be found on the SLAC-SPIRES
|
|---|
| 78 | online database (http://www.slac.stanford.edu/spires/) :
|
|---|
| 79 |
|
|---|
| 80 | - MONTE CARLO MICRODOSIMETRY FOR TARGETED IRRADIATION OF INDIVIDUAL CELLS USING
|
|---|
| 81 | A MICROBEAM FACILITY
|
|---|
| 82 | By S. Incerti, H. Seznec, M. Simon, Ph. Barberet, C. Habchi, Ph. Moretto
|
|---|
| 83 | Published in Rad. Prot. Dos. 133, 1 (2009) 2-11
|
|---|
| 84 |
|
|---|
| 85 | - MONTE CARLO SIMULATION OF THE CENBG MICROBEAM AND NANOBEAM LINES WITH THE
|
|---|
| 86 | GEANT4 TOOLKIT
|
|---|
| 87 | By S. Incerti, Q. Zhang, F. Andersson, Ph. Moretto, G.W. Grime,
|
|---|
| 88 | M.J. Merchant, D.T. Nguyen, C. Habchi, T. Pouthier and H. Seznec
|
|---|
| 89 | Published in Nucl. Instrum. and Meth. B 260 (2007) 20-27
|
|---|
| 90 |
|
|---|
| 91 | - A COMPARISON OF CELLULAR IRRADIATION TECHNIQUES WITH ALPHA PARTICLES USING
|
|---|
| 92 | THE GEANT4 MONTE CARLO SIMULATION TOOLKIT
|
|---|
| 93 | By S. Incerti, N. Gault, C. Habchi, J.L.. Lefaix, Ph. Moretto, J.L.. Poncy,
|
|---|
| 94 | T. Pouthier, H. Seznec. Dec 2006. 3pp.
|
|---|
| 95 | Published in Rad. Prot. Dos. 122, 1-4, (2006) 327-329
|
|---|
| 96 |
|
|---|
| 97 | - GEANT4 SIMULATION OF THE NEW CENBG MICRO AND NANO PROBES FACILITY
|
|---|
| 98 | By S. Incerti, C. Habchi, Ph. Moretto, J. Olivier and H. Seznec. May 2006. 5pp.
|
|---|
| 99 | Published in Nucl.Instrum.Meth.B249:738-742, 2006
|
|---|
| 100 |
|
|---|
| 101 | - A COMPARISON OF RAY-TRACING SOFTWARE FOR THE DESIGN OF QUADRUPOLE MICROBEAM
|
|---|
| 102 | SYSTEMS
|
|---|
| 103 | By S. Incerti et al.,
|
|---|
| 104 | Published in Nucl.Instrum.Meth.B231:76-85, 2005
|
|---|
| 105 |
|
|---|
| 106 | - DEVELOPMENT OF A FOCUSED CHARGED PARTICLE MICROBEAM FOR THE IRRADIATION OF
|
|---|
| 107 | INDIVIDUAL CELLS.
|
|---|
| 108 | By Ph. Barberet, A. Balana, S. Incerti, C. Michelet-Habchi, Ph. Moretto,
|
|---|
| 109 | Th. Pouthier. Dec 2004. 6pp.
|
|---|
| 110 | Published in Rev.Sci.Instrum.76:015101, 2005
|
|---|
| 111 |
|
|---|
| 112 | - SIMULATION OF CELLULAR IRRADIATION WITH THE CENBG MICROBEAM LINE USING
|
|---|
| 113 | GEANT4.
|
|---|
| 114 | By S. Incerti, Ph. Barberet, R. Villeneuve, P. Aguer, E. Gontier,
|
|---|
| 115 | C. Michelet-Habchi, Ph. Moretto, D.T. Nguyen, T. Pouthier, R.W. Smith. Oct 2003. 6pp.
|
|---|
| 116 | Published in IEEE Trans.Nucl.Sci.51:1395-1401, 2004
|
|---|
| 117 |
|
|---|
| 118 | - SIMULATION OF ION PROPAGATION IN THE MICROBEAM LINE OF CENBG USING
|
|---|
| 119 | GEANT4.
|
|---|
| 120 | By S. Incerti, Ph. Barberet, B. Courtois, C. Michelet-Habchi,
|
|---|
| 121 | Ph. Moretto. Sep 2003.
|
|---|
| 122 | Published in Nucl.Instrum.Meth.B210:92-97, 2003
|
|---|
| 123 |
|
|---|
| 124 |
|
|---|
| 125 | ------->3 VISUALIZATION
|
|---|
| 126 |
|
|---|
| 127 | The user can visualize the targeted cell by uncommenting the following line in
|
|---|
| 128 | microbeam.mac:
|
|---|
| 129 | #/control/execute vis.mac
|
|---|
| 130 |
|
|---|
| 131 | ---->4. HOW TO RUN THE EXAMPLE
|
|---|
| 132 |
|
|---|
| 133 | The variable G4ANALYSIS_USE must be set to 1.
|
|---|
| 134 |
|
|---|
| 135 | In order to generate histograms, at least one of the AIDA implementations should be
|
|---|
| 136 | available.
|
|---|
| 137 |
|
|---|
| 138 | The code should be compiled with gmake and run with :
|
|---|
| 139 |
|
|---|
| 140 | > $G4WORDIR/bin/$G4SYSTEM/Microbeam
|
|---|
| 141 |
|
|---|
| 142 | The macro file microbeam.mac is read by default.
|
|---|
| 143 |
|
|---|
| 144 |
|
|---|
| 145 | ---->5. PHYSICS
|
|---|
| 146 |
|
|---|
| 147 | Livermore, Binary and Binary_ion physics lists are used by default,
|
|---|
| 148 | see microbeam.mac
|
|---|
| 149 |
|
|---|
| 150 | ---->6. SIMULATION OUTPUT AND RESULT ANALYZIS
|
|---|
| 151 |
|
|---|
| 152 | The output results consist in several a microbeam.root file, containing several
|
|---|
| 153 | ntuples:
|
|---|
| 154 |
|
|---|
| 155 | * total deposited dose in the cell nucleus and in the cell
|
|---|
| 156 | cytoplasm by each incident alpha particle;
|
|---|
| 157 |
|
|---|
| 158 | * average on the whole run of the dose deposited per
|
|---|
| 159 | Voxel per incident alpha particle;
|
|---|
| 160 |
|
|---|
| 161 | * final stopping (x,y,z) position of the incident
|
|---|
| 162 | alpha particle within the irradiated medium (cell or culture medium)
|
|---|
| 163 |
|
|---|
| 164 | * stopping power dE/dx of the incident
|
|---|
| 165 | alpha particle just before penetrating into the targeted cell;
|
|---|
| 166 |
|
|---|
| 167 | * beam transverse position distribution(X and Y)
|
|---|
| 168 | just before penetrating into the targeted cell;
|
|---|
| 169 |
|
|---|
| 170 | These results can be easily analyzed using for example the provided ROOT macro
|
|---|
| 171 | file plot.C; to do so :
|
|---|
| 172 | * be sure to have ROOT installed on your machine
|
|---|
| 173 | * be sure to be in the microbeam directory
|
|---|
| 174 | * launch ROOT by typing root
|
|---|
| 175 | * under your ROOT session, type in : .X plot.C to execute the macro file
|
|---|
| 176 |
|
|---|
| 177 |
|
|---|
| 178 | ---------------------------------------------------------------------------
|
|---|
| 179 |
|
|---|
| 180 | Should you have any enquiry, please do not hesitate to contact:
|
|---|
| 181 | incerti@cenbg.in2p3.fr
|
|---|