source: trunk/examples/advanced/underground_physics/UserRequirements.txt @ 1255

Last change on this file since 1255 was 807, checked in by garnier, 16 years ago

update

File size: 9.7 KB
Line 
1UNDERGROUND PHYSICS ADVANCED EXAMPLE - DMX
2
3UserRequirements.txt - Alex Howard, e-mail: alexander.howard@cern.ch, 29/11/01.
4
5Introduction:
6
7This document is an initial introduction to the Dark Matter Example -
8DMX.  A single liquid xenon cell is simulated within Geant4 and the
9scintillation light produced from interactions from various
10calibration species is recorded as hits in a PhotoMultiplier Tube
11(PMT).  The output is then written to an ASCII file for future
12off-line analysis.
13
14-------------------------------------------------------------------------------
15
16                        User Requirements:
17
18General
19
20UR 1.1:    Configure the run management
21
22UR 1.2:    Configure the event loop
23
24
25
26Geometry:
27Experimental set-up:
28
29UR 2.1:
30A "cavern" of dimensions 5m x 6m x 3m with concrete walls is defined
31as the World Volume.  In the centre of the cavern a steel vacuum
32vessel containing liquid and gaseous xenon is placed.  The internal
33construction of the vessel accurately reproduces an existing prototype
34Dark Matter detector which allows experimental comparison. The active
35detector volume is defined by a series of metal rings, complemented by
36a cover mirror and a PMT immersed in the liquid.  Two grids and a
37thermalising copper shield are also incorporated. The liquid/gas
38interface is located 6mm away from the mirror surface. A Am241
39calibration source is suspended from one of the grids in the liquid
40phase, above the PMT.
41
42      XXX================XXX mirror
43      XXX________________XXX gas phase
44      XXX                XXX
45      XXX                XXX liquid phase
46      XXX                XXX
47      XXX.......U........XXX grid + calibrator
48      XXX................XXX grid
49      XXX|              |XXX
50         | ___------___ |
51         ||    PMT     ||
52         ||            ||
53
54An accurate simulation of the above set-up should be carried. 
55
56UR 2.2:
57Record the energy deposited in the sensitive volume of the xenon
58chamber (liquid phase).
59
60UR 2.3:
61Produce scintillation photons with different time constants and light
62yields depending upon the species of particle causing the excitation -
63either nuclear recoil or electron recoil type interactions.
64
65UR 2.4:
66Implement reflectivities and transmission probabilities for all materials
67concerned.
68
69UR 2.5:
70Ray trace the scintillation back to the PMT and record hit times, positions and
71number of photons.
72
73
74PHYSICS:
75
76The following areas of physics should be included:
77
78UR 3.1:  ·     Low Energy Electromagnetic - to 250eV for both e and photons
79               Maximum energy range around 10 MeV for any particle
80UR 3.2:  ·     Compton Scattering
81UR 3.3:  ·     Photoelectric Effect
82UR 3.4:  ·     Bremsstrahlung
83UR 3.5:  ·     Rayleigh Scattering - for both optical photons and hard
84               X-rays/Gammas
85UR 3.6:  ·     Electromagnetic ionisation
86UR 3.7:  ·     Delta Rays
87               Produced discretely down to 250eV to allow secondaries and
88               tertiaries to be properly handled
89UR 3.8:  ·     Heavy Ion Transport - to 250eV for protons, alphas and nuclei
90               Allows separate scintillation time and yield compared to gammas
91               (electrons)
92UR 3.9:  ·     Radioactive Decay - induced
93               All materials are sensitive to induced activity as a consequence
94               of photo-nuclear or neutron capture
95UR 3.10: ·     Radioactive Decay - sources
96               Specific nuclei can be decayed within the geometry to reproduce
97               experimental calibration the experiment
98UR 3.11: ·     Neutron tracking from medium energy (few MeV) to thermal capture
99               Discretely transported through-out the volume to give full
100               detector response for both neutron capture activation and
101               elastic and inelastic interaction in the target volume
102UR 3.12: ·     Scintillation light production and ray-tracing to PMT
103               Optical photon transport introduced to allow realistic
104               detector response to be produced.
105
106ParticleSource:
107
108UR 4.1:
109Implement a generic particle source that allows various particles, ions and
110nuclei to be fired or decayed anywhere within the volume.
111
112UR 4.2:
113Allow confinement of the particle source to within given volumes and randomly
114select particle or ion production within that volume.
115
116UR 4.3:
117Allow various source shapes - point, sphere and cylinder have been
118implemented.
119
120UR 4.4: !!!! not in ours !!!
121Allow spectrum of energies to be chosen as well as a monoenergetic particle
122type.
123
124
125Radioactive Decay Module:
126
127UR 5.1:
128Allows specific ions to be decayed within set nuclear limits and energies and
129positions - linked to Particle Source above.
130
131UR 5.2:
132Can control induced activity to specific volumes.
133
134UR 5.3:
135Allows increased functionality in terms of choice of weighting for the decay
136and other non-analogue MC techniques.
137
138
139Analysis:
140
141UR 6.1:
142Outputs to file "hits.out" the event number (Evt #), the energy
143deposited in the liquid phase (Etot, MeV), the number of hits in LXe
144(LXe hits), the time of the first hit (LXeTime, ns), the number of PMT
145hits (PMT hits), the average PMT hit time relative to the first hit in
146LXe (PmtTime, ns), the first particle to hit the LXe (First hit) and
147flags the type of particles depositing energy - gamma, neutron,
148electron, positron, proton, other (Flags).
149
150UR 6.2:
151The "First hit" and "Flags" described above constitute a record of
152particle type history important for identifying and differentiating
153between elastic and inelastic neutron interactions.
154
155
156
157Visualisation:
158
159UR 7.1:
160Visualise the experimental set-up.
161
162UR 7.2:
163Visualise tracks in the experimental set-up.
164
165UR 7.3:
166Allow the choice between scintillation light, PMT photocathode hits,
167and full tracking to be displayed.
168
169UR 7.4:
170Allow the user to choose specific track colours for gammas, neutrons,
171charged-plus and charged-minus tracks.
172
173UR 7.5:
174Allow output to stored interactive files using the HEPREP interface which can
175then be read into Wired and other XML packages.
176
177
178User Interface:
179
180UR 8.1:
181
182Allow control of the particle source via the /dmx/gun control:
183
184Command directory path : /dmx/gun/
185Guidance :
186Particle Source control commands.
187
188 Sub-directories :
189 Commands :
190 1) List * List available particles.
191 2) particle * Set particle to be generated.
192 3) direction * Set momentum direction.
193 4) energy * Set kinetic energy.
194 5) position * Set starting position of the particle.
195 6) ion * Set properties of ion to be generated.
196 7) type * Sets source distribution type.
197 8) shape * Sets source shape type.
198 9) centre * Set centre coordinates of source.
199 10) halfz * Set z half length of source.
200 11) radius * Set radius of source.
201 12) confine * Confine source to volume (NULL to unset).
202 13) angtype * Sets angular source distribution type
203 14) energytype * Sets energy distribution type
204 15) verbose * Set Verbose level for gun
205
206
207UR 8.2:
208Control verbosities via:
209The user should have the ability to change several features including
210    a) verbosities can be controlled for
211    /control/verbose
212    /run/verbose
213    /tracking/verbose
214    /hits/verbose
215    /grdm/verbose
216    /dmx/gun/verbose
217   
218
219UR 8.3:
220Control the output to the screen into Modulo N events:
221using printModulo control.
222
223Command /dmx/printModulo
224Guidance :
225Print events modulo n
226 Range of parameters : EventNb>0
227
228Parameter : EventNb
229 Parameter type  : i
230 Omittable       : False
231
232
233UR 8.4:
234Draw commands controlled via /dmx/draw/:
235
236DM Example draw commands.
237
238 Sub-directories :
239 Commands :
240 1) drawColours * Tracks drawn by Event (standard colours) or
241                  by Step (custom colours)
242 2) drawTracks * Which tracks to draw in the event
243 3) drawHits * Set flag to draw hits in PMT.
244 4) neutronColour * Colour of neutron in the event
245 5) gammaColour * Colour of gamma in the event
246 6) opticalColour * Colour of gamma in the event
247 7) chargedplusColour * colour of chargedplus in the event
248 8) chargedminusColour * colour of chargedminus in the event
249
250
251
252UR 8.5:
253Control the files to be saved - PMT hits and event summary in terms of
254energy deposit and number of photon hits observed.
255
256Command /dmx/savePmt
257Guidance :
258Set flag to save (x,y,z) of hits in PMT
259into file 'pmt.out'
260Default = false
261
262Parameter : savePmtFlag
263 Parameter type  : b
264 Omittable       : False
265
266
267Command /dmx/saveHits
268Guidance :
269Set flag to save hits in each run
270into file 'hits.out'
271Default = true
272
273Parameter : saveHitsFlag
274 Parameter type  : b
275 Omittable       : False
276
277
278
279UR 8.6:
280Allow the suppression of physics processes within specific volumes in
281order to optimise running of the neutron transport code.
282
283Gammas may be killed in the concrete wall in order to reduce
284processing time significantly.
285
286Command /dmx/KillGammasInConcrete
287Guidance :
288Kills gammas produced by neutrons in the concrete wall
289Default = false
290
291Parameter : KillGammasFlag
292 Parameter type  : b
293 Omittable       : False
294 Default value   : 0
295
296
297
298CUTS:
299
300UR 9.1:
301User can apply special cuts to time and step length to tracks.  If the
302global time is exceeded then the track is killed.
303
304UR 9.2:
305Allow gammas to be killed in the concrete wall in order to optimise
306processing time for neutron transport.
307
308------------------------------------------------------------------------------
309
310
311
312Background Information/Links
313 
314Information on the experimental side of this project can be obtained from the
315following:
316 
317Who we are:
318 Imperial College High Energy Physics Group -> http://www.hep.ph.ic.ac.uk/
319
320 Imperial College Astrophysics -> http://astro.ic.ac.uk/
321 
322Dark Matter collaboration and existing experimental programme:
323 Boulby Collaboration Home Page -> http://hepwww.rl.ac.uk/ukdmc/
324 
325 
326Full Users Requirement Document
327 
328A draft of the full users requirement document for the advanced example can be
329downloaded/viewed at the following:
330 
331        Word Document ->
332             http://icva.hep.ph.ic.ac.uk/~howard/g4_project/urd_draft1.doc
333 
334        Web Page ->
335             http://icva.hep.ph.ic.ac.uk/~howard/g4_project/urd_draft1.htm
336             
337 
338
339
340
Note: See TracBrowser for help on using the repository browser.