source: trunk/examples/extended/analysis/A01/README

Last change on this file was 1337, checked in by garnier, 14 years ago

tag geant4.9.4 beta 1 + modifs locales

File size: 6.2 KB
Line 
1$Id: README,v 1.10 2009/11/21 00:22:55 perl Exp $
2
3    =========================================================
4    Geant4 - an Object-Oriented Toolkit for Simulation in HEP
5    =========================================================
6
7                       Extended Example A01
8                       --------------------
9
10  Example A01 implements a double-arm spectrometer with wire chambers,
11  hodoscopes and calorimeters.  Event simulation and collection are
12  enabled, as well as event display and analysis.
13
14
15  1. GEOMETRY
16
17     The spectrometer consists of two detector arms.  One arm provides
18     position and timing information of the incident particle while the
19     other collects position, timing and energy information of the particle
20     after it has been deflected by a magnetic field centered at the
21     spectrometer pivot point.
22 
23       - First arm:  box filled with air, also containing:
24
25           1 hodoscope (15 vertical strips of plastic scintillator)
26           1 drift chamber (5 horizontal argon gas layers with a
27                            "virtual wire" at the center of each layer)
28
29       - Magnetic field region: air-filled cylinder which contains
30                                the field
31
32       - Second arm:  box filled with air, also containing:
33
34           1 hodoscope (25 vertical strips of plastic scintillator)
35           1 drift chamber (5 horizontal argon gas layers with a
36                            "virtual wire" at the center of each layer)
37           1 electromagnetic calorimeter:
38                 a box sub-divided along x,y and z
39                 axes into cells of CsI
40           1 hadronic calorimeter:
41                 a box sub-divided along x,y, and z axes
42                 into cells of lead, with a layer of
43                 plastic scintillator placed at the center
44                 of each cell
45
46
47  2. PHYSICS
48
49     This example uses the following physics processes:
50
51       - electromagnetic:
52           photo-electric effect
53           Compton scattering
54           pair production
55           bremsstrahlung
56           ionization
57           multiple scattering
58           annihilation
59
60       - decay
61
62       - transportation in a field
63
64     and defines the following particles:
65        geantino, charged geantino, gamma, all leptons,
66        pions, charged kaons
67
68     Note that even though hadrons are defined, no hadronic processes
69     are invoked in this example.
70
71
72  3. EVENT:
73
74     An event consists of the generation of a single particle which is
75     transported through the first spectrometer arm.  Here, a scintillator
76     hodoscope records the reference time of the particle before it passes
77     through a drift chamber where the particle position is measured.
78     Momentum analysis is performed as the particle passes through a magnetic
79     field at the spectrometer pivot and then into the second spectrometer
80     arm.  In the second arm, the particle passes through another hodoscope
81     and drift chamber before interacting in the electromagnetic calorimeter.
82     Here it is likely that particles will induce electromagnetic showers. 
83     The shower energy is recorded in a three-dimensional array of CsI
84     crystals.  Secondary particles from the shower, as well as primary
85     particles which do not interact in the CsI crystals, pass into the
86     hadronic calorimeter.  Here, the remaining energy is collected in a
87     three-dimensional array of scintillator-lead sandwiches.
88
89     Several aspects of the event may be changed interactively by the user:
90
91       - initial particle type
92       - initial momentum and angle
93       - momentum and angle spreads
94       - type of initial particle may be randomized
95       - strength of magnetic field
96       - angle of the second spectrometer arm
97
98
99  4. DETECTOR RESPONSE:
100
101     All the information required to simulate and analyze an event is
102     recorded in HITS.  This information is recorded in the following
103     sensitive detectors:
104
105       - hodoscope:
106           particle time
107           particle position
108           strip ID
109
110       - drift chamber:
111           particle time
112           particle position
113           layer ID
114 
115       - electromagnetic calorimeter:
116           particle position
117           energy deposited in cell
118           cell ID
119 
120       - hadronic calorimeter:   
121           particle position
122           energy deposited in cell
123           cell ID
124
125
126  5. VISUALIZATION:
127 
128     Simulated events can be displayed on top of a representation of the spectrometer.
129
130     vis.mac outputs HepRep version 1 files suitable for viewing in HepRApp or WIRED4.
131     Change the /vis/open line from HepRepFile to DAWNFILE to instead
132     make .prim files suitable for viewing in DAWN.
133
134     heprep2-000-gz.mac outputs a series of gzipped HepRep version 2 files
135     each containing a single event, suitable for viewing in HepRApp or WIRED4
136
137     heprep2zip.mac outputs a single zip file that unzips to a series of
138     HepRep version 2 files, each each containing a single event (unzip
139     the single file by hand, then view the resulting individial HepRep files).
140
141     heprep2-000-zip.mac outputs a series of zipped HepRep version 2 files
142     each containing a single event (not yet viewable unless you
143     explicitly unzip them before viewing).
144
145     heprep2.mac outputs a HepRep version 2 file with multiple events
146     appended to a single file in an experimental manner
147
148     heprep2gz.mac outputs a HepRep version 2 file with multiple events
149     appended to a single file in an experimental manner
150
151     Any of the heprep mac files above with the name bheprep (for instance
152     bheprep2zip.mac) will write a Binary HepRep version 2 file, readable only
153     by WIRED4 (not by HepRApp).
154
155
156  6. ANALYSIS:
157
158     This example implements an AIDA-compliant analysis system which
159     creates histograms, ntuples and plotters.  If you have built Geant4 with
160     the option to use anlaysis (answering yes to the appropriate question in
161     ./Configure -build), then at the completion of a simulation run,
162     a file A01.aida is produced which contains these data structures.
163     This file can be used as an input to the Java Analysis Studio (JAS) which allows
164     the histograms and ntuples to examined, manipulated, saved and printed.
165     For further details, see README.JAIDA.
Note: See TracBrowser for help on using the repository browser.