source: trunk/examples/extended/electromagnetic/TestEm0/src/RunAction.cc @ 1002

Last change on this file since 1002 was 807, checked in by garnier, 16 years ago

update

File size: 12.4 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
26// $Id: RunAction.cc,v 1.9 2006/12/08 16:38:38 maire Exp $
27// GEANT4 tag $Name: geant4-09-01-patch-02 $
28//
29//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
30//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
31
32#include "RunAction.hh"
33#include "DetectorConstruction.hh"
34#include "PrimaryGeneratorAction.hh"
35
36#include "G4Run.hh"
37#include "G4ProcessManager.hh"
38#include "G4UnitsTable.hh"
39#include "G4EmCalculator.hh"
40#include "G4Electron.hh"
41
42#include <vector>
43
44//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
45
46RunAction::RunAction(DetectorConstruction* det, PrimaryGeneratorAction* kin)
47:detector(det), primary(kin)
48{ }
49
50//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
51
52RunAction::~RunAction()
53{ }
54
55//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
56
57void RunAction::BeginOfRunAction(const G4Run*)
58{
59  //set precision for printing
60  G4int prec = G4cout.precision(6);
61   
62  // get particle
63  G4ParticleDefinition* particle = primary->GetParticleGun()
64                                          ->GetParticleDefinition();
65  G4String partName = particle->GetParticleName();
66  G4double charge   = particle->GetPDGCharge();   
67  G4double energy   = primary->GetParticleGun()->GetParticleEnergy();
68 
69  // get material
70  G4Material* material = detector->GetMaterial();
71  G4String matName     = material->GetName();
72  G4double density     = material->GetDensity();
73  G4double radl        = material->GetRadlen(); 
74
75  G4cout << "\n " << partName << " ("
76         << G4BestUnit(energy,"Energy") << ") in " 
77         << material->GetName() << " (density: " 
78         << G4BestUnit(density,"Volumic Mass") << ";   radiation length: "
79         << G4BestUnit(radl,   "Length")       << ")" << G4endl;         
80
81  // get cuts   
82  GetCuts();
83  if (charge != 0.) {
84   G4cout << "\n  Range cuts : \t gamma " 
85                      << std::setw(8) << G4BestUnit(rangeCut[0],"Length")
86          << "\t e- " << std::setw(8) << G4BestUnit(rangeCut[1],"Length");
87   G4cout << "\n Energy cuts : \t gamma " 
88                      << std::setw(8) << G4BestUnit(energyCut[0],"Energy")
89          << "\t e- " << std::setw(8) << G4BestUnit(energyCut[1],"Energy")
90          << G4endl;
91   }
92         
93  // get processList and extract EM processes (but not MultipleScattering)
94  G4ProcessVector* plist = particle->GetProcessManager()->GetProcessList();
95  G4String procName;
96  G4double cut;
97  std::vector<G4String> emName;
98  std::vector<G4double> enerCut;
99  size_t length = plist->size();
100  for (size_t j=0; j<length; j++) {
101     procName = (*plist)[j]->GetProcessName();
102     cut = energyCut[1];
103     if ((procName == "eBrem")||(procName == "muBrems")) cut = energyCut[0];
104     if (((*plist)[j]->GetProcessType() == fElectromagnetic) &&
105         (procName != "msc")) {
106       emName.push_back(procName);
107       enerCut.push_back(cut);
108     } 
109  }
110 
111  // print list of processes
112  G4cout << "\n  processes :                ";
113  for (size_t j=0; j<emName.size();j++)
114    G4cout << "\t" << std::setw(13) << emName[j] << "\t";
115  G4cout << "\t" << std::setw(13) <<"total";
116     
117  //instanciate EmCalculator
118  G4EmCalculator emCal;
119  //  emCal.SetVerbose(2);
120 
121  //compute cross section per atom (only for single material)
122  if (material->GetNumberOfElements() == 1) {
123    G4double Z = material->GetZ();
124    G4double A = material->GetA();
125     
126    std::vector<G4double> sigma0;
127    G4double sig, sigtot = 0.;
128
129    for (size_t j=0; j<emName.size();j++) {
130      sig = emCal.ComputeCrossSectionPerAtom
131                      (energy,particle,emName[j],Z,A,enerCut[j]);
132      sigtot += sig;                         
133      sigma0.push_back(sig);           
134    }
135    sigma0.push_back(sigtot);
136
137    G4cout << "\n \n  cross section per atom   : ";
138    for (size_t j=0; j<sigma0.size();j++) {         
139      G4cout << "\t" << std::setw(13) << G4BestUnit(sigma0[j], "Surface");
140    }
141    G4cout << G4endl;
142  }
143   
144  //get cross section per volume
145  std::vector<G4double> sigma1;
146  std::vector<G4double> sigma2; 
147  G4double Sig, Sigtot = 0.;
148
149  for (size_t j=0; j<emName.size();j++) {
150    Sig = emCal.GetCrossSectionPerVolume(energy,particle,emName[j],material);
151    if (Sig == 0.) Sig = emCal.ComputeCrossSectionPerVolume
152                     (energy,particle,emName[j],material,enerCut[j]);
153    Sigtot += Sig;                           
154    sigma1.push_back(Sig);
155    sigma2.push_back(Sig/density);                     
156  }
157  sigma1.push_back(Sigtot);
158  sigma2.push_back(Sigtot/density);       
159   
160  //print cross sections
161  G4cout << "\n \n  cross section per volume : ";
162  for (size_t j=0; j<sigma1.size();j++) {           
163    G4cout << "\t" << std::setw(13) << sigma1[j]*cm << " cm^-1";
164  }
165 
166  G4cout << "\n  cross section per mass   : ";
167  for (size_t j=0; j<sigma2.size();j++) {
168    G4cout << "\t" << std::setw(13) << G4BestUnit(sigma2[j], "Surface/Mass");
169  }
170   
171  //print mean free path
172 
173  G4double lambda;
174 
175  G4cout << "\n \n  mean free path           : ";
176  for (size_t j=0; j<sigma1.size();j++) {
177    lambda = DBL_MAX; 
178    if (sigma1[j] > 0.) lambda = 1/sigma1[j];
179    G4cout << "\t" << std::setw(13) << G4BestUnit( lambda, "Length");
180  }
181 
182  //mean free path (g/cm2)
183  G4cout << "\n        (g/cm2)            : "; 
184  for (size_t j=0; j<sigma2.size();j++) {
185    lambda =  DBL_MAX;
186    if (sigma2[j] > 0.) lambda = 1/sigma2[j];                       
187    G4cout << "\t" << std::setw(13) << G4BestUnit( lambda, "Mass/Surface");   
188  }
189  G4cout << G4endl;
190 
191  if (charge == 0.) {
192    G4cout.precision(prec);
193    G4cout << "\n-------------------------------------------------------------\n"
194           << G4endl;
195    return;
196  }
197 
198  //get stopping power
199  std::vector<G4double> dedx1;
200  std::vector<G4double> dedx2; 
201  G4double dedx, dedxtot = 0.;
202
203  for (size_t j=0; j<emName.size();j++) {
204    dedx = emCal.ComputeDEDX(energy,particle,emName[j],material,enerCut[j]);
205    dedx1.push_back(dedx);
206    dedx2.push_back(dedx/density);                     
207  }
208  dedxtot = emCal.GetDEDX(energy,particle,material);
209  dedx1.push_back(dedxtot);
210  dedx2.push_back(dedxtot/density);       
211   
212  //print stopping power
213  G4cout << "\n \n  restricted dE/dx         : ";
214  for (size_t j=0; j<sigma1.size();j++) {           
215    G4cout << "\t" << std::setw(13) << G4BestUnit(dedx1[j],"Energy/Length");
216  }
217 
218  G4cout << "\n      (MeV/g/cm2)          : ";
219  for (size_t j=0; j<sigma2.size();j++) {
220  G4cout << "\t" << std::setw(13) << G4BestUnit(dedx2[j],"Energy*Surface/Mass");
221  }
222 
223  //get range from restricted dedx
224  G4double range1 = emCal.GetRangeFromRestricteDEDX(energy,particle,material);
225  G4double range2 = range1*density;
226 
227   //get range from full dedx
228  G4double Range1 = emCal.GetCSDARange(energy,particle,material);
229  G4double Range2 = Range1*density;
230 
231  //print range
232  G4cout << "\n \n  range from restrict dE/dx: " 
233         << "\t" << std::setw(8) << G4BestUnit(range1,"Length")
234         << " (" << std::setw(8) << G4BestUnit(range2,"Mass/Surface") << ")";
235         
236  G4cout << "\n  range from full dE/dx    : " 
237         << "\t" << std::setw(8) << G4BestUnit(Range1,"Length")
238         << " (" << std::setw(8) << G4BestUnit(Range2,"Mass/Surface") << ")";
239         
240  //get transport mean free path (for multiple scattering)
241  G4double MSmfp1 = emCal.GetMeanFreePath(energy,particle,"msc",material);
242  G4double MSmfp2 = MSmfp1*density;
243 
244  //print transport mean free path
245  G4cout << "\n \n  transport mean free path : " 
246         << "\t" << std::setw(8) << G4BestUnit(MSmfp1,"Length")
247         << " (" << std::setw(8) << G4BestUnit(MSmfp2,"Mass/Surface") << ")";
248
249  if (particle == G4Electron::Electron()) CriticalEnergy();
250         
251  G4cout << "\n-------------------------------------------------------------\n";
252  G4cout << G4endl;
253       
254 // reset default precision
255 G4cout.precision(prec);   
256}
257
258//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
259
260void RunAction::EndOfRunAction(const G4Run* )
261{ }
262
263//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
264
265#include "G4ProductionCutsTable.hh"
266
267//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
268
269void RunAction::GetCuts()
270{ 
271  G4ProductionCutsTable* theCoupleTable =
272        G4ProductionCutsTable::GetProductionCutsTable();
273       
274  size_t numOfCouples = theCoupleTable->GetTableSize();
275  const G4MaterialCutsCouple* couple = 0;
276  G4int index = 0;
277  for (size_t i=0; i<numOfCouples; i++) {
278     couple = theCoupleTable->GetMaterialCutsCouple(i);
279     if (couple->GetMaterial() == detector->GetMaterial()) {index = i; break;}
280  }
281 
282  rangeCut[0] =
283         (*(theCoupleTable->GetRangeCutsVector(idxG4GammaCut)))[index];
284  rangeCut[1] =     
285         (*(theCoupleTable->GetRangeCutsVector(idxG4ElectronCut)))[index];
286  rangeCut[2] =     
287         (*(theCoupleTable->GetRangeCutsVector(idxG4PositronCut)))[index]; 
288
289  energyCut[0] =
290         (*(theCoupleTable->GetEnergyCutsVector(idxG4GammaCut)))[index];
291  energyCut[1] =     
292         (*(theCoupleTable->GetEnergyCutsVector(idxG4ElectronCut)))[index];
293  energyCut[2] =     
294         (*(theCoupleTable->GetEnergyCutsVector(idxG4PositronCut)))[index];
295
296}
297
298//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
299
300void RunAction::CriticalEnergy()
301{
302  // compute e- critical energy (Rossi definition) and Moliere radius.
303  // Review of Particle Physics - Eur. Phys. J. C3 (1998) page 147
304  //
305  G4EmCalculator emCal;
306   
307  const G4Material* material = detector->GetMaterial();
308  const G4double radl = material->GetRadlen();
309  G4double ekin = 5*MeV;
310  G4double deioni;
311  G4double err  = 1., errmax = 0.001;
312  G4int    iter = 0 , itermax = 10; 
313  while (err > errmax && iter < itermax) {
314    iter++;         
315    deioni  = radl*
316              emCal.ComputeDEDX(ekin,G4Electron::Electron(),"eIoni",material);
317    err = std::abs(deioni - ekin)/ekin;
318    ekin = deioni;
319  }
320  G4cout << "\n \n  critical energy (Rossi)  : " 
321         << "\t" << std::setw(8) << G4BestUnit(ekin,"Energy");
322         
323  //Pdg formula (only for single material)
324  G4double pdga[2] = { 610*MeV, 710*MeV };
325  G4double pdgb[2] = { 1.24, 0.92 };
326  G4double EcPdg = 0.;
327 
328  if (material->GetNumberOfElements() == 1) {
329    G4int istat = 0;
330    if (material->GetState() == kStateGas) istat = 1; 
331    G4double Zeff = material->GetZ() + pdgb[istat];
332    EcPdg = pdga[istat]/Zeff;
333    G4cout << "\t\t\t (from Pdg formula : " 
334           << std::setw(8) << G4BestUnit(EcPdg,"Energy") << ")";   
335  }
336     
337 const G4double Es = 21.2052*MeV;
338 G4double rMolier1 = Es/ekin, rMolier2 = rMolier1*radl;
339 G4cout << "\n  Moliere radius           : "
340        << "\t" << std::setw(8) << rMolier1 << " X0 "   
341        << "= " << std::setw(8) << G4BestUnit(rMolier2,"Length");
342       
343 if (material->GetNumberOfElements() == 1) {
344    G4double rMPdg = radl*Es/EcPdg;
345    G4cout << "\t (from Pdg formula : " 
346           << std::setw(8) << G4BestUnit(rMPdg,"Length") << ")";   
347  }     
348}
349
350//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
Note: See TracBrowser for help on using the repository browser.