source: trunk/examples/extended/electromagnetic/TestEm10/README @ 1337

Last change on this file since 1337 was 1337, checked in by garnier, 14 years ago

tag geant4.9.4 beta 1 + modifs locales

File size: 4.8 KB
Line 
1$Id: README,v 1.6 2008/05/07 11:47:09 maire Exp $
2-------------------------------------------------------------------
3
4     =========================================================
5     Geant4 - an Object-Oriented Toolkit for Simulation in HEP
6     =========================================================
7
8                            TestEm10
9                            --------
10
11    Test for investigation of ionisation in thin absorbers, transition
12    and synchrotron radiations. Default setup for "TestEm10.in" and "TestEm10.large_N.in" is
13    the experiment for XTR with NIM A294 (1990) 465-472 (fig. 11) setup
14
15
16 0- INTRODUCTION
17       
18        The parameterisations models can be changed simply with:
19
20        Idle> /XTRdetector/setModel i (i = 1 to 10)
21
22        It is NOT needed (and not recommended) to issue the command
23        /XTRdetector/update if just the model is changed.
24
25        See macro file "TestEm10.in" for an example.
26
27       
28 1- GEOMETRY DEFINITION
29 
30        The "absorber" is a tube made of a given material.               
31       
32        Three parameters define the absorber :
33        - the material of the absorber,
34        - the thickness of an absorber,
35        - the transverse size of the absorber (the input face is a square).
36   
37        The volume "World" contains the "absorber".
38        In this test the parameters of the "World" can be changed , too.
39
40        In addition a transverse uniform magnetic field can be applied.
41       
42        The default geometry is constructed in DetectorConstruction class,
43        but all the parameters can be changed via
44        the commands defined in the DetectorMessenger class.
45       
46 2- AN EVENT : THE PRIMARY GENERATOR
47 
48        The primary kinematic consists of a single particle which hits the
49        absorber perpendicular to the input face. The type of the particle
50        and its energy are set in the PrimaryGeneratorAction class, and can
51        be changed via the G4 build-in commands of ParticleGun class (see
52        the macros provided with this example).
53       
54        A RUN is a set of events.
55       
56 3- DETECTOR RESPONSE
57
58        Here we test G4PAIionisation , G4IonisationByLogicalVolume and
59        transition radiation processes
60 
61        A HIT is a record, event per event , of all the
62        informations needed to simulate and analyse the detector response.
63       
64        In this example a CalorHit is defined as a set of 2 informations:
65        - the total energy deposit in the absorber,
66        - the total tracklength of all charged particles in the absorber, 
67       
68        Therefore  the absorber is declared
69        'sensitive detector' (SD), which means they can contribute to the hit.
70       
71        At the end of a run, from the histogram(s), one can study
72        different physics quantities such as :
73                                - angle distribution,
74                                - energy deposit,
75                                - transmission/backscattering,
76                                -  ...
77       
78        The test contains 10 built-in histograms, which can be activated by
79        interactive commands (see the macros runxx.mac for details).
80
81        The histogram files can be viewed using PAW e.g with the commands
82
83                paw> h/file 1 geant4.plot01 or g4.p11
84                paw> option stat
85                paw> h/pl 1
86
87
88                               
89 4- PHYSICS DEMO
90 
91        The particle's type and the physic processes which will be available
92        in this example are set in PhysicsList class.
93       
94        The  messenger classes introduce interactive commands . Using these
95        commands the geometry of the detector, the data of the primary
96        particle, the limits of the histograms , etc. can be changed.
97       
98
99 5- HOW TO START ?
100 
101        - compile and link to generate an executable
102                % cd TestEm10
103                % gmake
104               
105        - execute TestEm10 in 'batch' mode from macro files e.g.
106                % $(G4INSTALL)/bin/$(G4SYSTEM)/TestEm10   run11.mac
107               
108        - execute TestEm10 in 'interactive' mode with visualization e.g.
109                % $(G4INSTALL)/bin/$(G4SYSTEM)/TestEm10
110                ....
111                Idle> type your commands
112                ....
113               
114 List of the built-in histograms
115 -------------------------------
116
117        1.   number of (tracking) steps/event
118        2.   energy deposit distribution in the absorber (in MeV)
119        3.   angle distribution of the primary particle at the exit
120             of the absorber (deg)
121        4.   distribution of the lateral displacement at exit(mm)
122        5.   kinetic energy of the transmitted primaries (MeV)
123        6.   angle distribution of the backscattered primaries (deg)
124        7.   kinetic energy of the backscattered primary particles (MeV)
125        8.   kinetic energy of the charged secondary particles (MeV)
126        9.   z distribution of the secondary charged vertices (mm)
127       10.   kinetic energy of the photons escaping the absorber (MeV)
128
129
130 Using histograms
131 ----------------
132
133By default the histograms are not activated. To activate histograms
134the environment variable G4ANALYSIS_USE should be defined. For instance
135uncomment the flag G4ANALYSIS_USE in GNUmakefile.
136
137To use histograms any of implementations of AIDA interfaces should
138be available. See InstallAida.txt
Note: See TracBrowser for help on using the repository browser.