// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id: RunAction.cc,v 1.8 2007/08/19 20:57:29 maire Exp $ // GEANT4 tag $Name: geant4-09-03-cand-01 $ // //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... #include "RunAction.hh" #include "DetectorConstruction.hh" #include "PhysicsList.hh" #include "StepMax.hh" #include "PrimaryGeneratorAction.hh" #include "HistoManager.hh" #include "G4Run.hh" #include "G4RunManager.hh" #include "G4UnitsTable.hh" #include "G4EmCalculator.hh" #include "Randomize.hh" #include //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... RunAction::RunAction(DetectorConstruction* det, PhysicsList* phys, PrimaryGeneratorAction* kin, HistoManager* histo) :detector(det),physics(phys),kinematic(kin),histoManager(histo) { } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... RunAction::~RunAction() { } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... void RunAction::BeginOfRunAction(const G4Run* aRun) { G4cout << "### Run " << aRun->GetRunID() << " start." << G4endl; // save Rndm status G4RunManager::GetRunManager()->SetRandomNumberStore(true); CLHEP::HepRandom::showEngineStatus(); //initialize total energy deposit // Edeposit = Edeposit2 = 0.; //initialize track legth of primary // trackLen = trackLen2 = 0.; //initialize projected range // projRange = projRange2 = 0.; //initialize mean step size // nbOfSteps = nbOfSteps2 = 0; stepSize = stepSize2 = 0.; //get csdaRange from EmCalculator // G4EmCalculator emCalculator; G4Material* material = detector->GetAbsorMaterial(); G4ParticleDefinition* particle = kinematic->GetParticleGun() ->GetParticleDefinition(); G4double energy = kinematic->GetParticleGun()->GetParticleEnergy(); csdaRange = DBL_MAX; if (particle->GetPDGCharge() != 0.) csdaRange = emCalculator.GetCSDARange(energy,particle,material); //histograms // histoManager->book(); //set StepMax from histos // G4double stepMax = histoManager->ComputeStepMax(csdaRange); physics->GetStepMaxProcess()->SetMaxStep(stepMax); } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... void RunAction::EndOfRunAction(const G4Run* aRun) { std::ios::fmtflags mode = G4cout.flags(); G4cout.setf(std::ios::fixed,std::ios::floatfield); G4int NbofEvents = aRun->GetNumberOfEvent(); if (NbofEvents == 0) return; G4double fNbofEvents = double(NbofEvents); //run conditions // G4Material* material = detector->GetAbsorMaterial(); G4double density = material->GetDensity(); G4ParticleDefinition* particle = kinematic->GetParticleGun() ->GetParticleDefinition(); G4String partName = particle->GetParticleName(); G4double energy = kinematic->GetParticleGun()->GetParticleEnergy(); G4cout << "\n ======================== run summary ======================\n"; G4int prec = G4cout.precision(2); G4cout << "\n The run consists of " << NbofEvents << " "<< partName << " of " << G4BestUnit(energy,"Energy") << " through " << G4BestUnit(detector->GetAbsorRadius(),"Length") << " of " << material->GetName() << " (density: " << G4BestUnit(density,"Volumic Mass") << ")" << G4endl; G4cout << "\n ============================================================\n"; //compute total energy deposit // Edeposit /= NbofEvents; Edeposit2 /= NbofEvents; G4double rms = Edeposit2 - Edeposit*Edeposit; if (rms>0.) rms = std::sqrt(rms); else rms = 0.; G4cout.precision(3); G4cout << "\n Total Energy deposited = " << G4BestUnit(Edeposit,"Energy") << " +- " << G4BestUnit( rms,"Energy") << G4endl; //compute track length of primary track // trackLen /= NbofEvents; trackLen2 /= NbofEvents; rms = trackLen2 - trackLen*trackLen; if (rms>0.) rms = std::sqrt(rms); else rms = 0.; G4cout.precision(3); G4cout << "\n Track length of primary track = " << G4BestUnit(trackLen,"Length") << " +- " << G4BestUnit( rms,"Length"); //compare with csda range // //G4EmCalculator emCalculator; //G4double csdaRange = 0.; //if (particle->GetPDGCharge() != 0.) // csdaRange = emCalculator.GetCSDARange(energy,particle,material); G4cout << "\n Range from EmCalculator = " << G4BestUnit(csdaRange,"Length") << " (from full dE/dx)" << G4endl; //compute projected range of primary track // projRange /= NbofEvents; projRange2 /= NbofEvents; rms = projRange2 - projRange*projRange; if (rms>0.) rms = std::sqrt(rms); else rms = 0.; G4cout << "\n Projected range = " << G4BestUnit(projRange,"Length") << " +- " << G4BestUnit( rms,"Length") << G4endl; //nb of steps and step size of primary track // G4double fNbSteps = nbOfSteps/fNbofEvents, fNbSteps2 = nbOfSteps2/fNbofEvents; rms = fNbSteps2 - fNbSteps*fNbSteps; if (rms>0.) rms = std::sqrt(rms); else rms = 0.; G4cout.precision(2); G4cout << "\n Nb of steps of primary track = " << fNbSteps << " +- " << rms; stepSize /= NbofEvents; stepSize2 /= NbofEvents; rms = stepSize2 - stepSize*stepSize; if (rms>0.) rms = std::sqrt(rms); else rms = 0.; G4cout.precision(3); G4cout << "\t Step size= " << G4BestUnit(stepSize,"Length") << " +- " << G4BestUnit( rms,"Length") << G4endl; // normalize histogram of longitudinal energy profile // G4int ih = 1; G4double binWidth = histoManager->GetBinWidth(ih); G4double fac = (1./(NbofEvents*binWidth))*(mm/MeV); histoManager->Scale(ih,fac); // normalize histogram d(E/E0)/d(r/r0) // ih = 8; binWidth = histoManager->GetBinWidth(ih); fac = 1./(NbofEvents*binWidth*energy); histoManager->Scale(ih,fac); // reset default formats G4cout.setf(mode,std::ios::floatfield); G4cout.precision(prec); // save histograms histoManager->save(); // show Rndm status CLHEP::HepRandom::showEngineStatus(); } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......