source: trunk/examples/extended/electromagnetic/TestEm15/README @ 807

Last change on this file since 807 was 807, checked in by garnier, 16 years ago

update

File size: 5.9 KB
Line 
1$Id: README,v 1.4 2007/11/13 14:13:31 maire Exp $
2-------------------------------------------------------------------
3
4     =========================================================
5     Geant4 - an Object-Oriented Toolkit for Simulation in HEP
6     =========================================================
7
8                            TestEm15
9                            --------
10
11        How to compute and plot the final state of Multiple Scattering
12        considered as an isolated process.
13        The method is exposed below : see item Physics.
14       
15 1- GEOMETRY DEFINITION
16 
17        It is a single box representing a 'semi infinite' homogeneous medium.
18        Two parameters define the geometry :
19        - the material of the box,
20        - the (full) size of the box.
21       
22        The default geometry (100 m of water) is constructed in
23        DetectorConstruction, but the above parameters can be changed
24        interactively via the commands defined in DetectorMessenger.
25       
26 2- PHYSICS LIST
27 
28        The physics list contains the standard electromagnetic processes.
29        In order not to introduce 'articicial' constraints on the step size,
30        there is no limitation from the maximum energy lost per step. 
31         
32 3- AN EVENT : THE PRIMARY GENERATOR
33 
34        The primary kinematic consists of a single particle starting at the edge
35        of the box. The type of the particle and its energy are set in
36        PrimaryGeneratorAction (1 MeV electron), and can be changed via the G4
37        build-in commands of ParticleGun class (see the macros provided with
38        this example).
39       
40 4- PHYSICS
41 
42        All discrete processes are inactivated (see provided macros),
43        so that Multiple Scattering is 'forced' to determine the first step of
44        the primary particle. The step size and the final state are computed
45        and plotted. Then the event is immediately killed.
46       
47        The result is compared with the 'input' data, i.e. with the cross
48        sections stored in the PhysicsTables and used by Geant4.
49       
50        The stepMax command provides an additionnal control of the step size of
51        the multiple scattering.
52       
53
54 5- HISTOGRAMS
55         
56        The test contains 9 built-in 1D histograms, which are managed by the
57        HistoManager class and its Messenger. The histos can be individually
58        activated with the command :
59        /testem/histo/setHisto id nbBins  valMin valMax unit
60        where unit is the desired unit for the histo (MeV or keV, etc..)
61        (see the macros xxxx.mac).
62               
63        1       Multiple Scattering. True step length
64        2       Multiple Scattering. Geom step length
65        3       Multiple Scattering. Ratio geomSl/trueSl
66        4       Multiple Scattering. Lateral displacement: radius
67        5       Multiple Scattering. Lateral displac: psi_space
68        6       Multiple Scattering. Angular distrib: theta_plane
69        7       Multiple Scattering. Phi-position angle
70        8       Multiple Scattering. Phi-direction angle
71        9       Multiple Scattering. Correlation: cos(phiPos-phiDir)
72       
73        See below the note on histogram tools.
74       
75        One can control the name and the type of the histograms file with
76        the commands:
77        /testem/histo/setFileName  name  (default testem15)
78        /testem/histo/setFileType  name  (default hbook)
79       
80        It is also possible to print selected histograms on an ascii file:
81        /testem/histo/printHisto id
82        All selected histos will be written on a file name.ascii 
83        (default testem15)
84       
85        Note that, by default, histograms are disabled. To activate them,
86        uncomment the flag G4ANALYSIS_USE in GNUmakefile.       
87                                       
88 6- VISUALIZATION
89 
90        The Visualization Manager is set in the main().
91        The initialisation of the drawing is done via the commands
92        /vis/... in the macro vis.mac. To get visualisation:
93        > /control/execute vis.mac
94       
95        The detector has a default view which is a longitudinal view of the
96        box.
97       
98        The tracks are drawn at the end of event, and erased at the end of run.
99       
100 7- HOW TO START ?
101 
102        compile and link to generate an executable
103                % cd geant4/examples/extended/electromagnetic/TestEm15
104                % gmake
105               
106        execute TestEm15 in 'batch' mode from macro files :
107                % TestEm15   compt.mac
108               
109        execute TestEm15 in 'interactive mode' with visualization :
110                % TestEm15
111                Idle> control/execute vis.mac
112                ....
113                Idle> type your commands
114                ....
115                Idle> exit
116 
117
118 8- USING HISTOGRAMS
119 
120  By default the histograms are not activated. To activate histograms
121  the environment variable G4ANALYSIS_USE should be defined. For instance
122  uncomment the flag G4ANALYSIS_USE in GNUmakefile.
123 
124  Before compilation of the example it is optimal to clean up old files:
125        gmake histclean
126        gmake
127         
128  To use histograms, at least one of the AIDA implementations should be
129  available (see http://aida.freehep.org).
130 
131 8a - PI
132
133  A package including AIDA and extended interfaces also using Python is PI,
134  available from: http://cern.ch/pi
135
136  Once installed PI or PI-Lite in a specified local area $MYPY, it is required
137  to add the installation path to $PATH, i.e. for example, for release 1.2.1 of
138  PI:
139  setenv PATH ${PATH}:$MYPI/1.2.1/app/releases/PI/PI_1_2_1/rh73_gcc32/bin
140
141  CERN users can use the PATH to the LCG area on AFS.
142  Before running the example the command should be issued:
143  eval `aida-config --runtime csh`
144
145 8b -  OpenScientist
146
147  OpenScientist is available at http://OpenScientist.lal.in2p3.fr.
148
149  You have to "setup" the OpenScientist AIDA implementation before compiling
150  (then with G4ANALYSIS_USE set) and running your Geant4 application.
151
152 On UNIX you setup, with a csh flavoured shell :
153        csh> source <<OpenScientist install path>/aida-setup.csh
154        or with a sh flavoured shell :
155        sh> . <<OpenScientist install path>/aida-setup.sh
156 On Windows :
157        DOS> call <<OpenScientist install path>/aida-setup.bat
158
159  You can use various file formats for writing (AIDA-XML, hbook, root).
160  These formats are readable by the Lab onx interactive program
161  or the OpenPAW application. See the web pages.
162
163
164  With OpenPAW, on a run.hbook file, one can view the histograms
165  with something like :
166        OS> opaw
167        opaw> h/file 1 run.hbook  ( or opaw> h/file 1 run.aida or run.root) 
168        opaw> zone 2 2
169        opaw> h/plot 1
170        opaw> h/plot 2
Note: See TracBrowser for help on using the repository browser.